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Abstract 

In satellite constellation design, performance and cost of the system drive the 

design process.  The Global Positioning System (GPS) constellation is currently used to 

provide positioning and timing worldwide.  As satellite technology has improved over the 

years, the cost to develop and maintain the satellites has increased.  Using a constellation 

design tool, it is possible to analyze the tradeoffs of new navigation constellation designs 

(Pareto fronts) that illustrate the tradeoffs between position dilution of precision (PDOP) 

and system cost.  This thesis utilized Satellite Tool Kit (STK) to calculate PDOP values 

of navigation constellations, and the Unmanned Spacecraft Cost Model (USCM) along 

with the Small Spacecraft Cost Model (SSCM) to determine system cost.  The design 

parameters used include Walker constellation parameters, orbital elements, and transmit 

power.  The results show that the constellation design tool produces realistic solutions.  

Using the generated solutions, an analysis of the navigation constellation designs was 

presented.  
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NAVIGATION CONSTELLATION DESIGN  

USING A MULTI-OBJECTIVE GENETIC ALGORITHM 

Chapter 1   
  Introduction 

In order to maintain the power and influence the United States (US) currently 

possesses in space, innovation and the will to try new ideas is imperative.  In today’s 

world, money and budgets are a priority when it comes to analyzing space systems.  

Attempting to maintain or improve performance but decrease the cost is the goal for 

many military and civilian leaders.  The Global Positioning System (GPS) is a critical 

system for the military and civilian sectors of the US.  Positioning and timing for systems 

such as precision guided munitions, banking, power grids, and basic navigation are 

provided by GPS.  The US Air Force is concerned with researching new configurations 

for the GPS constellation to continue to provide accurate position and timing 

measurements for global use.  Analyzing the tradeoffs between performance and cost, the 

following research determines there are alternate navigation constellation designs at 

various altitudes.      

1.1 Motivation 

To improve coverage capabilities provided by single satellites, satellite 

constellations are used.  For missions, such as GPS, where constant global coverage is a 

requirement, constellations are a necessity.  Satellite constellations also add robustness to 

a system because if one fails, there are still multiple satellites functioning properly.  Over 
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the years, the need for global coverage has increased, and navigation is not the only 

mission seeking to utilize constellations for this purpose.  Missions like communications 

and remote sensing also require the benefits that constellations offer.   

Since the need for satellite constellations has increased through the years, there 

has been more focus on the design process for such systems.  However, designing a 

satellite constellation has many different segments that must come together properly in 

order to achieve the mission.  There is the orbit design and configuration segment, which 

determines the amount of coverage the constellation will provide.  Spacecraft design is 

the segment which relies on the altitude and determines spacecraft cost.  The launch 

manifest segment relies on altitude, but also relies on other parameters such as satellite 

inclination and the number of planes in the constellation.  Lastly, cost through 

deployment takes into account the research and development, production, and launch 

costs of the system.  Figure 1-1 illustrates the multiple factors that have an influence on 

the design of a constellation [1].   

 
Figure 1-1: Satellite Constellation Design Problem 
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The task of determining a specific constellation design forces decision-makers to 

evaluate possible solutions against the mission requirements.  When requirements of a 

system conflict, there are tradeoffs.  The tradeoffs are used to determine the best solution 

based on what is most important to the decision maker.  As a result of the complexity in 

the design process, constellation design tools are used to determine possible solutions.  

When analyzing tradeoffs of a system, the multi-objective genetic algorithm (MOGA) is 

well suited for the problem [2].  MOGAs approximate a Pareto front, which is a set of 

designs to a multi-objective optimization problem.  MOGAs are most beneficial when the 

objective functions in the problem are conflicting.  Performance and cost are usually 

conflicting factors in a system.  MOGA’s are able to consider multiple design variables 

and their relation to the objective functions in the problem [2]. 

The GPS constellation is an example of a system that used constellation design 

tools to analyze the potential performance and cost of the program.  The GPS was 

developed by the Department of Defense (DoD) in 1973, and it was initially intended to 

only be used for military needs.  As a result of the wide range of uses provided by this 

system, the DoD later promoted civilian use of the system [3].  The GPS consists of three 

segments: the space segment, the control segment, and the user segment.  The space 

segment is required to maintain the availability of at least 24 satellites, so currently the 

GPS constellation possesses 31 operational satellites that orbit at an altitude of 

approximately 20,000 kilometers (km) [4].  Each satellite circles the Earth twice a day.  

The constellation is currently designed with six equally spaced orbital planes, and each 

plane holds four satellites [4].  The 24 satellite arrangement guarantees that a user on the 

Earth can view at least four satellites from any point on the planet.  The need for GPS has 
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grown tremendously over the years, which is the reason the US has continuously given 

money to the research and development of the program.  GPS is considered a key piece to 

mission success, for missions involving navigation, in the US due to its precise 

positioning and timing capabilities.  

“Efficiencies in positioning, movement and timing derived from the ubiquitous 
GPS signals have already quietly permeated virtually every level of our national 
infrastructure to the extent that, in many cases, there is no going back to earlier 
ways of doing things without tremendous but unrecognized penalties” [5].   

Ensuring that US capabilities are maintained is a crucial task for both military and 

civilian decision makers.  It is fundamental that we research different constellation design 

tools that are focused on navigation systems so that navigation constellation designs can 

be analyzed and compared.   

1.2 Problem Statement 

As the technology on the satellites has improved throughout the years, the cost to 

develop and produce the satellites has increased.  In 2013, the House Armed Services 

Committee directed the Air Force to report on lower-cost GPS solutions [6].  Combining 

the research conducted on the current GPS constellation with the capabilities of a 

constellation design tool, it is possible to develop new designs for navigation, designs 

with similar performance levels to that of the current GPS but with lower costs. 

1.2.1 Design Variables.  

This research analyzes navigation constellation designs using a constellation 

design tool that consists of MATLAB’s MOGA and Analytical Graphics, Inc. (AGI) 

Systems Tool Kit (STK).  This research uses Walker constellations because in this 
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constellation, all the satellites are equally distributed on similar and phased orbital planes.  

In order to describe the constellation and satellite design, design variables, separated into 

three main categories, are included in this research.  The first category is the Walker 

parameters, which include the number of planes in the constellation, the number of 

satellites per plane, the true anomaly phasing, and the right ascension of the ascending 

node increment.  Depending on the altitude, these parameters will vary in order to 

maintain global coverage.  The second category of variables is the orbital parameters: 

 alt: altitude of the orbit in km 
 e: eccentricity of the orbit 
 i: inclination of the orbit in degrees 
 𝜔: argument of perigee in degrees 
 Ω: right ascension of the ascending node in degrees 
 M: mean anomaly in degrees 

Section 2.1.2 discusses these variables in further detail.  Each of these variables defines 

different aspects of the orbits included in the constellation.  These parameters will vary to 

analyze the design changes for constellations at different altitudes.  The last category of 

variables is the satellite design parameter.  In this thesis, transmit power, measured in 

Watts (W), is the variable that determines the size of the satellite.  With a higher altitude, 

more transmit power is required to close link at the edges of the Earth, so the size of the 

satellite will also be larger to accommodate the larger equipment needed.  This variable 

constrains the size of the satellite used in specific scenarios to maintain a level of reality 

in the analysis.    

1.2.2 Objective Functions. 

The constellation design tool developed in this research possesses multiple 

objective functions.  In constellation design, it is very difficult to optimize one objective 
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function without considering other factors.  By using a MOGA, tradeoffs between 

objective functions can be analyzed.  The first objective function in this tool is cost, 

which is calculated by standard cost models from The Space Mission Engineering: The 

New SMAD [7].  The cost model takes into account the research and development, 

production, and launch cost.  This cost model is just an estimation used in this tool to 

give users a general idea of the cost required for a given system.  Due to the manner in 

which this tool is designed, a more accurate cost model, if available, can be used instead.  

However, there are limitations to the cost models used in this tool due to the assumptions 

made for this research.  These will be discussed more in depth in later sections. 

 The second objective function in this tool is the position dilution of precision 

(PDOP) function.  This function measures the performance of the navigation 

constellations.  The position accuracy depends on the geometry of the satellites overhead.  

Navigation constellations can be compared using PDOP.  Smaller values of PDOP are 

more likely to provide accurate positioning to the user.  STK is used in this tool to 

perform the PDOP calculations, and it uses a basic line of sight concept to complete the 

calculations.   

 In order to minimize two objective functions (cost and PDOP), MATLAB’s 

MOGA tool is used in this constellation design tool.  The main goal of a MOGA is to 

determine all possible tradeoffs among the conflicting objective functions.  Since 

tradeoffs between the functions are the outcome, it is difficult to obtain one single design 

without iterative interaction with the decision maker.  The approach used in this research 

is to show a set of Pareto optimal solutions to the decision maker.  This allows the 

decision maker to select one of the Pareto optimal solutions based on broader 
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considerations not incorporated into the optimization.  A Pareto front of solutions also 

illustrates guidelines of good systems.  

 This research combines the optimization of multiple objective functions using 

MATLAB’s MOGA, the cost model written in MATLAB, and STK’s calculation of 

PDOP to create a navigation constellation design tool.  Using the design variables 

described above along with the objective functions, this research analyzes alternate 

navigation constellation designs at different orbital altitudes and evaluates the trade-offs 

of the various designs.  Using the optimized constellations, different design guidelines are 

articulated.     

1.3 Assumptions 

To define the scope of the research, assumptions were made throughout the 

process.  Each objective function was created separately and written in individual 

MATLAB files.  The cost function developed in this research is assumed to be a 

sufficient estimate for the scenarios analyzed in this thesis.  It is a cost model developed 

specifically for a scenario using Walker constellation designs.  Because a Walker design 

is used, it is assumed that every satellite in the constellation is exactly the same.  

Therefore, in the cost model, the cost is determined for one satellite and then multiplied 

by the total number of satellites in the scenario.  The goal of this research is not to 

produce a cost model; it is to use a cost estimate to analyze multiple navigation 

constellation designs.   

Within the cost function, there is a calculation to determine the type and number 

of launch vehicles needed for the problem.  The process of fully optimizing the number 
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and specific type of launch vehicles used in a scenario is outside the scope of this 

research due to it being a combinatorial problem.  Therefore, the calculation to determine 

launch vehicles used in this work is assumed to be an adequate estimation of the vehicles 

required in a scenario.   

To analyze performance, the PDOP function is used.  The values of PDOP are 

calculated through STK, and the measurement is assumed to be an indicative metric.  

Using STK does result in weaknesses in the metric, but overall, it is assumed to be 

reasonable estimate when compared to the current GPS constellation values.  Once the 

MOGA has produced a Pareto front, it is assumed that the solutions on the front are 

optimal.  

1.4 Research Objectives 

This research consists of two main components: the development of the design 

tool and the analysis of optimal design solutions that are produced.  The first component 

requires research into constellation design tools and the modification of the tools to 

operate for navigation satellites.  The cost function, PDOP function, and overall MOGA 

function must operate together in order to produce design solutions.  The functioning tool 

will be used to explore the design trade space of navigation constellations.  By applying 

this method, it allows for a broader search than feasible by hand to be accomplished.  The 

automation of this design tool also allows for high fidelity simulations to accurately 

capture and illustrate the tradeoffs.  The resulting tradeoffs of the design solutions will 

give decision makers design guidelines for navigation constellations at different altitudes.   
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1.5 Summary 

Satellite constellation design tools are continuing to improve over time, and they 

still maintain their value since military and civilian leaders are consistently looking for 

methods to decrease cost but improve performance on space systems.  This thesis is 

supplementing the constellation design tool research completed by Second Lieutenant 

Evelyn Abbate1 by illustrating the use of MATLAB’s MOGA tool, STK’s PDOP 

calculation, and the interface between the two programs.  This specific tool not only 

offers high fidelity simulations, but it also offers the visual aid provided by STK.  The 

ability to demonstrate the design tradeoffs and illustrate solutions in STK gives decision 

makers the freedom to select solutions based on their broader considerations and their 

specific preferences.  It is difficult to produce a complete design solution when only 

analyzing one objective function.  This methodology incorporates the necessity of 

analyzing multiple objective functions and providing tradeoffs for navigation 

constellation designs.     

  

                                                 
1 2dLt Abbate was a graduate from the Air Force Institute of Technology (AFIT).  
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Chapter 2   
Background 

 This chapter presents a summary of topics relevant to constellation design and 

optimization methods.  It describes different constellation configurations that have been 

considered and specific constellation design tools.  Various optimizers, along with their 

advantages and disadvantages, are analyzed.  Finally, a description of previous and 

current work is given.  

2.1 Concepts Related to Constellation Design 

Over the last several decades, space has grown from a strategic asset into tactical 

applications that support the warfighter.  Space influences government, business, and 

culture.  Satellites deliver television broadcasts, weather forecasts, and navigation 

through GPS.  The US has become heavily reliant on the use of space systems not just for 

the everyday use, but for carrying out military operations.  Each satellite has a purpose, 

and the orbit it is placed in determines how that purpose is carried out.  According to 

James Wertz, an orbit is defined as the path of a spacecraft or natural body through space.  

More specifically, a Keplerian orbit is “one in which gravity is the only force, the central 

body is spherically symmetric; the central body’s mass is much greater than that of the 

satellite; and the central body and satellite are the only two objects in the system” [7].  

The following sections describe the different orbital altitudes, classical orbital elements, 

and perturbations that exist for different orbits.  
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2.1.1 Orbit Types. 

There are different categories of orbits.  It is important to understand these for the 

purpose of this research.  Orbital altitudes include three main categories: low Earth orbit 

(LEO), mid Earth orbit (MEO), and geosynchronous orbit (GEO).  The altitude is 

measured from the surface of the Earth.  A satellite in LEO is in an altitude range of 180-

2,000 kilometers (km).  MEO is classified as any orbit between 2,000 and 35,780 km.  

Lastly GEO is an orbit at 35,780 km [8].  Each orbital altitude provides different benefits 

to a mission.  For example, satellites in LEO can be used for imaging because they are 

closer to the Earth’s surface. However, GPS is required to have global coverage, so it 

benefits from being in MEO and GEO.  Spacecraft placed in GEO are used for Earth 

observation and communications [9].  The significance of this orbit is that its period2 is 

equal to the rotation period of the Earth, which means its period is one day.  This allows a 

spacecraft to remain fixed over a point on the Earth’s equator.     

2.1.2 Astrodynamics. 

To define the orbit of a spacecraft around the Earth, there are six parameters that 

are necessary to recognize, and these parameters are referred to as classical orbital 

elements (COEs) or Keplerian elements.  These parameters include semi-major axis, 

eccentricity, inclination, right ascension of the ascending node, argument of perigee, and 

true anomaly (Figure 2-1).  To describe an orbit’s shape and size, the semi-major axis and 

eccentricity are used.  The semi-major axis measures the orbit size; it is half the length of 

                                                 
2 The orbital period is the time it takes for a spacecraft to revolve once around its orbit. 
[11] 
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the major axis of the ellipse.  The important fact to note with this variable is that it is not 

measured from the surface of the Earth, so altitude and semi-major axis are different.  

Eccentricity is used to measure the shape of an orbit, and it is the ratio of the semi-minor 

to the semi-major axes.  Table 2-1 shows the different conic sections with the associated 

values for the semi-major axis and eccentricity [7].   

Conic Semi-major Axis Eccentricity 

Circle =radius (>0) =0 

Ellipse >0 0<e<1 

Parabola ∞ =1 

Hyperbola <0 >1 

Table 2-1: Orbit Properties of Conic Sections 

Once the orbit size and shape are determined, the next few variables describe the 

orientation of the orbit plane.  Inclination is the angle between the orbit plane and a 

reference plane, as seen in Figure 2-1 [10].  When the inclination is between zero and 90 

degrees, it is said to be a prograde orbit.  When the inclination is between 90 and 180 

degrees, it is a retrograde orbit.  The intersection of the equatorial and orbital plane 

through the center of Earth is considered the line of nodes, which is shown in Figure 2-1.  

When the satellite passes the equator from south to north, it is called the ascending node, 

and when it passes from north to south, it is called the descending node.  Along with the 

inclination, the orbit is defined with respect to the line of nodes.  The right ascension of 
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the ascending node (RAAN) is the angle measured eastward from the vernal equinox3 to 

the ascending node of the orbit [7].   

Next, it is important to define the variable associated with describing the 

orientation of the orbit within the plane.   To describe the rotational orientation of the 

major axis, argument of perigee is used.  This is measured as the angle between the 

ascending node and the direction of perigee in the orbit.  Lastly, true anomaly is used to 

describe the position of the satellite within the orbit.  It is measured from the direction of 

perigee to the actual location of the satellite in the orbit [7].  With all of these orbital 

parameters together, a full description of an orbit is provided, and the location of a 

satellite can be determined.       

 
Figure 2-1: Classical Orbital Elements [4]       

                                                 
3 Vernal equinox is the location of the Sun in the sky on the first day of spring. It is a reference point used 
for inertial space [7]. 
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2.1.3 Perturbations.    

The COE’s described in Section 2.1.2 were defined using several different 

assumptions.  The first assumption was that gravity was the only force acting on the 

spacecraft.  Second, the Earth is spherically symmetric with uniform density, thus it could 

be treated as a point mass.  Lastly, it was assumed the spacecraft mass remained constant.  

Real orbits do not follow these assumptions, but Keplerian orbits do give a reasonable 

estimate to a true orbit.  A true orbit is normally defined for times in the past, and then 

using the satellite’s ephemeris data, the orbit can be propagated into the future.  When 

there is a change in any of the orbital elements due to outside forces, it is called a 

perturbation.  Perturbations can have specific effects depending on the orbital altitude and 

positioning.  Since perturbations vary at different altitudes, they can have an effect on 

constellation designs [11].     

At lower altitudes, it is possible to still observe effects from the Earth’s 

atmosphere.  Gravity is not the only force acting on a satellite, and at orbital altitudes up 

to 600 km, atmospheric drag is a large force [11].  Drag affects the semi-major axis and 

eccentricity of the orbit because it removes energy from the orbit in the form of friction.   

One of the challenges with constellation designs at these altitudes is that drag is difficult 

to model because there are many factors related to it. 

 Another common perturbation comes from the Earth’s oblateness.  The Earth is 

not perfectly spherical, which perturbs the spacecraft because the gravitational force is 

not coming from the Earth’s center.  This perturbation is referred to as the J2 effect4, and 

                                                 
4 J2 is a constant describing the size of the bulge in the mathematical formulas used to model the 
oblate Earth [11]. 
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it influences two of the orbital elements.  This oblateness causes the orbit to precess, 

similar to a spinning top, which then affects the location of the ascending node.  The rate 

at which the node changes is called the nodal regression rate, and it is a function of 

inclination and orbital altitude.  Orbits at lower orbital altitudes and lower inclinations 

have the most influence from the J2 effect [11].  Along with the change in the ascending 

node, the J2 effect also influences the argument of perigee in an orbit.  The effects are 

similar to the nodal regression rate in that the perigee rotation rate increases with lower 

orbital altitudes and lower inclinations.  Orbit designs in LEO and MEO with lower 

inclinations need to take this perturbation into account [11].  

 Orbits in GEO have to consider the effects from solar radiation pressure.  Sunlight 

consists of photons, which when in contact with a surface, transfers its momentum to that 

surface.  When that small force is exerted unevenly on the surface of a spacecraft, it can 

cause slight movements over time.  This poses a challenge especially for spacecraft 

needing precise pointing [11].  Each orbital altitude possesses its own challenges, but as 

long as the designer is aware of them, the mission can include mitigation methods.  For 

this work, perturbations were not accounted for, but this section gives an idea of possible 

advantages and disadvantages of using certain orbits.    

2.1.4 Constellation Types.   

To improve certain mission objectives, a set of satellites, working to achieve the 

same goals, can be distributed over space.  This is considered a satellite constellation.  

Since this research is focusing on global coverage, Walker constellations will be used in 

the design process.  Walker constellations consist of circular orbits of equal altitude and 
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inclination, and the orbital planes are spaced equally around the equatorial plane.  These 

constellations are defined by the number of planes, the number of satellites per plane, and 

an inter-plane spacing.  Their greatest advantage is that there are a finite number of them, 

and they can be identified and investigated [12].  Figure 2-2 illustrates the concept of a 

Walker constellation [13]. 

 
Figure 2-2: Walker Constellation  

 Although Walker constellations provide global coverage, there are several non-

Walker constellations that can be used for regional coverage.  Figure 2-3 illustrates 

several examples of non-Walker constellations [7].  Option A provides coverage over the 

polar region with less interest on the equatorial region.  If coverage is needed in the 

equatorial region, along with the polar region, it is possible to add a plane over the 

equator.  This is seen in Option B.  Option C uses two perpendicular planes offset from 

the equator.  Lastly, Option D allows for coverage of the polar region with better 
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coverage of the equatorial region compared to Option A [7].  The mission of the system 

will provide details on the type of constellation to utilize.   

 
Figure 2-3: Examples of Non-Walker Constellations [7] 

2.2 GPS Constellation Design  

 To facilitate the study of navigation constellation design, it is important to 

understand the design of the current GPS constellation.  This section discusses various 

configurations for the GPS constellation in order to maximize coverage.  Global coverage 

drives the design.  To maintain global coverage, there is a need for good geometric 

diversity worldwide.  As a result, the use of geosynchronous satellites is possible only 

with the proper amount of inclination.   



2-18 

 

The focus of navigation satellites started on MEO and LEO.  However, the 

constraint on the design to maintain at least four satellites in view of the user at all times 

drove designs to higher altitudes.  With the higher costs related to GEO and the poor 

geometric properties in LEO, MEO altitudes were considered the most beneficial for the 

GPS constellation [4].  The current constellation consists of near circular orbits with a 

radius of 20,200 km [14].   

 To meet the optimal amount of coverage, dilution of precision5 characteristics, 

and cost, GPS satellites were placed in inclined 12-hour orbits, which are considered 

MEO.  Orbits at higher altitudes produce good geometric properties and require a fewer 

number of satellites to maintain redundancy of coverage.  Although the geometric 

properties and redundancy are improved, 12-hour orbits require station keeping, which 

means frequently correcting the satellites trajectory to stay in the correct orbit.  To satisfy 

certain robustness considerations, multiple satellites were placed in specific orbital planes 

with an inclination of 55 degrees [14].  The total number of planes was chosen as six, 

with four satellites per plane.  The planes are equally spaced by 60 degrees, but the 

satellites are not equally spaced within the planes [4].  This configuration is considered a 

tailored Walker constellation since the satellites are not equally spaced within the 

planes [4]. 

  

                                                 
5 Dilution of precision is a measure of the satellite geometry, which is referred to above as 
geometric properties 
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2.3 Constellation Design Tools 

  The decision to place satellites in a specific constellation includes factors, such as 

mission objectives, cost, available launch vehicles, and operational requirements to 

support the mission.  There is no correct answer when it comes to constellation design, 

because each mission will require a different constellation configuration.  According to 

Wertz, constellation selection is a process instead of set computations [7].  The following 

discussion provides a general process for designing a satellite constellation.  

2.3.1 Constellation Design Process. 

This section discusses the constellation design process described by Wertz [7]. 

One of the first steps is to establish the orbit type: Earth-referenced or space-referenced 

orbits.  As the name implies, Earth-referenced orbits provide coverage of the surface of 

the Earth or near-Earth space.  Since this research is focusing on navigation, the orbit 

type will be Earth-referenced orbit.  Second, the orbit-related mission requirements need 

to be established.  This includes factors like orbital limits and altitude needed for 

coverage.  Requirements for resolution or launch capability constrain the orbit to lower 

altitudes; however, coverage, lifetime, and survivability drive the orbit to higher altitudes. 

Satellites located at GEO maintain a fixed location over the Earth.  The covered 

area of the Earth is a function of the minimum elevation angle of the specific system.  

Figure 2-4 illustrates the coverage from GEO as a function of the minimum elevation 

angle [7].  The highest percent coverage results with a minimum elevation of zero 

degrees, which means the system is viewing tangential to the Earth.   
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Figure 2-4: Coverage from Geostationary Orbit [7] 

The third step in the design process is to evaluate the orbit.  This step incorporates 

the decision of using a single satellite versus a constellation.  Although a single satellite 

reduces mission cost, a constellation provides better coverage, higher reliability, and 

greater survivability.  A constellation is also needed to create the necessary geometry for 

navigation and continuous coverage of the Earth.  Fourth, the orbit cost must be analyzed.  

The previous step illustrates the orbit performance for a specific mission, but with greater 

performance usually comes higher costs.   Launching a spacecraft into GEO requires 

launching approximately five times the spacecraft mass in LEO.  Lastly, documentation 

and iteration is an imperative component of this process because it allows the design to 

be re-evaluated as mission conditions change over time [7].   
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2.3.2 Constellation Design Tools. 

Designing a satellite constellation requires the consideration of several different 

variables and system requirements.  In order to ensure the management and efficiency of 

the design process, different algorithms and tools have been developed.  These tools are 

able to take in to account different aspects included in a constellation.  For example, the 

altitude and inclination of a constellation have a large impact on the coverage 

performance, so the design tools are able to measure the optimal value of the two 

variables.  Navigation is a well-known use for satellite constellations, so it has been used 

in validating different design tools over the years. 

 2.3.2.1 ORION. 

Three specific satellite constellation design algorithms were studied and tested by 

GMV6.  GMV integrated the algorithms with a software tool kit called ORION.  This tool 

combines optimization procedures and Monte Carlo simulation techniques and gives the 

designers a method to plan and analyze a generic constellation.  The algorithms were 

applied to the FUEGO constellation to validate their success.  The FUEGO constellation 

is a constellation of small satellites that detect forest fires from LEO.  

The first algorithm described is related to Walker constellations, where the 

traditional approach is to minimize the total number of satellites.  It is considered the 

Symmetric, Inclined Constellation Design Method, and it optimizes the Earth central 

angle,𝜃.  Figure 2-5 illustrates the geometry [15].  The user does not need to know all the 

details of the constellation to use this algorithm.  However, with more parameters, the 

                                                 
6 GMV is an international business group that operates in aeronautics, space, defense, and other 
areas of technology. 
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algorithm will produce more useful results in a timely manner.  Some of the values to 

specify may include minimum elevation angle, minimum altitude, minimum and 

maximum number of satellites, minimum and maximum orbital plane inclination, and the 

number of orbital planes.  The more efficient constellation is one with a lower value of 𝜃 

and a fixed number of satellites [15].   

 
Figure 2-5: Single Satellite Viewing Geometry 

 The second algorithm is called the Polar, Non-Symmetric Design Algorithm, 

which uses a “streets-of-coverage” approach.  This can be seen in Figure 2-3 Option D.  

This approach includes multiple circular orbit satellites at the same altitude and in a 

single plane.  This creates a coverage band which is continuously viewed.  Figure 2-6 

illustrates this concept [15].  The only required input for this algorithm is the type of 

coverage to analyze, global or regional.  Some additional parameters may include 

minimum elevation angle and/or altitude, number of satellites, desired folds of coverage, 

and number of orbital planes.  The optimization methodology is implemented by using a 

series of analytical relations that determine the parameters that define the constellation.  
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The optimally phased polar constellations are determined by minimizing 𝜃.  This 

program outputs the optimal values of the angular spacing between orbits, the inter-plane 

spacing between satellites, and the value of 𝜃 [15].    

 
Figure 2-6: Street of Coverage from a Single Orbital Plane 

 The Advanced Adaptive Random Search Algorithm is the last algorithm analyzed 

in [15].  The two previous algorithms are commonly used in constellation design, but 

they have several limitations.  They can only take classical geometric design factors into 

account, and they cannot take satellite failures or hybrid constellation possibilities into 

consideration.  The Advanced Adaptive Random Search Algorithm is used to address 

those limitations. This is a variation of a genetic algorithm, but instead of optimizing 

multiple traits simultaneously, this algorithm optimizes each trait separate from one 

another.  A trait is an aspect of the individual that influences the objective function.  Then 

the optimized value of the first trait is used for the optimization of the remaining traits.  

In the optimization problem, there is a clearly defined function to optimize, and with this 
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algorithm, the following functions can be optimized: any DOP values, mean revisit time, 

maximum revisit time, and satellite failures [15].   

 Each of these algorithms is embedded in the constellation design tool.  The first 

algorithm was used to define a Walker constellation based on required coverage.  The 

second algorithm was used to define a polar, non-symmetric constellation based on 

required coverage.  Then the last algorithm is used to optimize the selected constellation 

design that resulted from either of the other algorithms.  These algorithms can be used 

separately or together, and if performed together, it creates a two-step optimization tool 

for constellation design.  

2.3.2.2 Collaborative Optimization. 

A new approach for system integration and optimization of a satellite 

constellation was studied in [1].  The conceptual design of a satellite constellation is a 

very complex, highly constrained, and multidisciplinary problem.  Therefore the 

methodologies provide a way for designers to quickly analyze and explore design 

spaces [1]. 

 The chosen methodology in [1] is collaborative optimization (CO), which was 

proposed by Braun [16].  The authors describe CO as an approach “that employs a bilevel 

optimization technique wherein a single system optimizer orchestrates and coordinates 

several optimization processes at the subspace level, that is, at the individual discipline or 

subsystem level.”  The authors suggest that CO implementation can benefit the 

constellation design problem.   

 The CO consists of a system level variable vector that possesses the top-level 

design parameters. Those parameters affect the objective and interdisciplinary variables 
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that couple the subspaces.  The goal of the system level optimizer is to select values that 

optimize the overall objective function.  It also selects values for the interdisciplinary 

variables and recommends them as targets for each of the subspace optimizers to match 

within a set system level iteration.  The subspace optimizer must ensure that its local 

disciplinary constraints are satisfied at each system level iteration [1].   

  There are three discipline level programs used in this study.  The first discipline 

level is configuration and orbit design, and this module performs coverage analysis for 

different orbital parameters.  To optimize this subspace efficiently, a combination of 

exhaustive grid search and heuristics were implemented [1].   

 The second disciplinary level program is spacecraft design, which estimates the 

mass and cost of the payload and spacecraft bus.  The subspace optimizer is considered a 

hybrid optimization scheme, made of a univariate search and a gradient based search.  

This technique proved to have the ability to efficiently solve the spacecraft design 

optimization problem [1]. 

 Launch manifest is the last disciplinary level program, and this module finds the 

minimum launch cost strategy to deploy the constellation.  The subspace optimizer was 

created from a three step process.  First, the integer programming problem was solved for 

the minimum cost strategy.  Next, heuristics were used to select an option to improve the 

constraint values.  Lastly, a univariate search completed the tradeoff between the mission 

orbit and spacecraft unit mass [1]. 

 The need for a systematic, multivariable, multidisciplinary method was 

recognized and CO was applied as the approach for the system integration and 

optimization of a satellite constellation.  The study included the design of the 
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constellation’s orbit, individual spacecraft, and deployment strategy.  Successful 

convergence related to the design and deployment problem was achieved, which 

validated the use of CO for this type of problem [1].  

2.3.2.4 STK-MATLAB Interface.  

In this thesis, a constellation design tool is created using MATLAB and STK.  

STK is a program that allows users to model, analyze, and visualize space systems.  

Users can create objects such as satellites and constellations, as well as propagate specific 

orbits through time.  Once the orbits and constellations are defined, the program allows 

users to quantify the performance using several different measurements.   To create a 

constellation design tool, MATLAB is used to execute all the commands needed to 

operate STK in this scenario.  The documentation in STK’s programming help lists 

specific STK operations in alphabetical order.  This allows the user to search certain 

commands.  The documentation illustrates basic examples of the code, but without prior 

knowledge of the format, it is difficult to debug the program.     

2.3.3 Challenges in Designing a Constellation. 

Designing a satellite constellation is a process, and Section 2.3.1 described the 

steps.  Since there are multiple factors included in the design of a constellation, several 

challenges may exist.  When determining the orbit type of the constellation, there are 

advantages and disadvantages to each type.  The challenge for the decision maker is 

defining the most important factor and deciding if it is worth facing the limitations of 

certain orbit types to accomplish the goal.  Section 2.1.3 discussed the different 

perturbations that exist with different orbit types, and these can drive the decision to use 
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or not to use a certain orbit type.  In constellation design, coverage is normally a key 

parameter because it is a fundamental element of performance [7].  However, according 

to Wertz, “Earth coverage is not a Gaussian parameter and statistical data can give very 

misleading results” [7].  This can make evaluating coverage a challenge, but there are 

methods used to overcome the challenge.  Another challenge in constellation design is 

maintaining the required cost budget.  With most space systems, a budget, along with 

requirements, is set before the design begins.  Performance is an important factor, but as 

performance improves, the cost to support the system increases.  Therefore, the designers 

must continuously be aware of the cost budget, so they do not design a constellation with 

a level of performance outside the customer’s budget.   

Within the cost budget, an estimate of launch cost is included.  There are several 

challenges involved with estimating launch cost.  The first challenge is that the cost of 

launch is flexible based on the law of supply and demand.  In addition to the cost 

flexibility, there is potential for dual payload launches.  For example, a larger launch 

vehicle may be selected, and the launch margin is used to accompany a secondary 

payload.  This secondary payload can assist in the overall cost of the vehicle.  Lastly, 

there are evolutionary trends in launch costs that dictate the price launch manufacturers 

can charge for certain vehicles.  These challenges combined make it difficult to estimate 

the launch cost for a given system [7].   

2.4 Optimization 

Regardless of complexity, the general form of an optimization problem is to 

minimize a cost function that is subject to constraints.  The solution is a vector of design 
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variables that meets all the criteria [17].  In this thesis, there are two objective functions: 

PDOP and cost.  A multi-objective genetic algorithm is selected as the optimization 

routine for this thesis.  This section gives a description of numerical optimization, particle 

swarm optimization, and genetic algorithms.    

2.4.1 Numerical Optimization. 

When the number of variables and constraints in an optimization problem is 

greater than three, a numerical method is typically necessary to solve it.  Numerical 

methods also have the ability to directly search for optimal points.  There are several 

classifications of search methods used for nonlinear problems.  First, derivative-based 

methods are used.  They are based on the assumption that all functions of the problem are 

continuous and at least twice continuously differentiable [17].  Methods in this 

classification are also considered as gradient-based search methods.  These methods use 

an iterative search process that is initiated with an estimate of the design variables.  

Gradients of the function are calculated using the values of the given function.  The 

gradient is used to incrementally improve the solution, and it repeats until a stopping 

criterion is reached.  These methods only use local information, so these methods always 

converge to a local minimum point, but they can be adjusted to find global solutions [17]. 

Direct search methods are another classification of search methods.  These 

methods do not use derivatives of functions to find solutions.  The only values that are 

considered are those of the functions.  The methods are still able to work properly if the 

function values are unavailable; it just needs to be able to determine which point will lead 

to a better value compared to other points [17].  The next classification is the derivative-
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free methods, which are methods that do not explicitly calculate the derivatives of 

functions.  In order to create a local model, the derivatives are approximated using only 

the function values. 

There are two types of optimization problems to consider: unconstrained and 

constrained.  For unconstrained optimization, the basic iterative equation is shown in 

Equation 1. 

𝑥𝑖
(𝑘+1) = 𝑥𝑖

(𝑘) + ∆𝑥𝑖
(𝑘); 𝑖 = 1 𝑡𝑜 𝑛; 𝑘 = 0,1,2, …                         (1) 

Where xi
(k) is the kth iteration of the ith design variable.  The process is summarized as a 

general algorithm that consists of five steps.  These steps are taken from [17].  First, 

estimate a reasonable starting design 𝑥(0) and set the iteration counter k=0.  Second, 

compute a search direction 𝒅(𝑘) at the point 𝑥(𝑘) in the design space.  This step needs a 

cost function value along with its gradient for unconstrained problems, and for 

constrained problems, this step needs the constraint function along with its gradients.  

Third, check for convergence of the algorithm; if it converged, then stop.  Otherwise, 

continue the process.  Fourth, calculate a positive step size 𝛼𝑘 in the direction,𝒅(𝑘).  

Lastly, update the design as seen in Equation 2; set k=k+1.  Then go back to the second 

step.   

𝑥(𝑘+1) = 𝑥(𝑘) + 𝛼𝑘𝒅(𝑘)                                              (2) 

 This general algorithm can be applied to unconstrained and constrained 

optimization problems, but with constrained problems, the constraints must be considered 

when determining the search direction.  Arora gives a four step numerical algorithm for 

constrained problems [17].  First, linearize the cost and constraint functions about the 
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current design point.  Second, define the search direction using the linearized functions.  

Third, solve the sub-problem that gives a search direction in the design space.  Lastly, 

calculate the step size to minimize a descent function in the search direction [17].   

 The algorithms described above are basic algorithms that can be used in 

numerical optimization.  It is important to understand the type of problem being solved 

and ensure that the chosen algorithm is well-suited for the problem.  Without the 

appropriate algorithm, it is not guaranteed that accurate solutions will be generated.  

2.4.2 Particle Swarm Optimization. 

Particle swarm optimization (PSO) is another method that can be used for 

constellation design.  There are some common terms used in this optimization process.  

The population of the algorithm is considered a swarm, and a particle is an individual 

member of the swarm that represents a possible solution to the problem.  A leader is a 

particle that is used to guide other particles towards more efficient regions of the search 

space.  The velocity vector is the vector that drives the optimization process by defining 

the direction for a particle to travel in order to improve its current position.  To control 

the impact the previous history of velocities has on the current velocity of a particle, 

inertia weight is used.  The learning factor represents the attraction that a particle has 

toward either its own success or that of its neighbors [18].  

Having an understanding of the terms used in this process aids in the 

comprehension of the PSO algorithm.  The PSO algorithm uses fewer parameters 

compared to GAs, and it does not use the operators such as crossover and mutation.  It is 

easier to execute on computers because it does not require the use of binary number 
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encoding or decoding.  According to Reyes-Sierra et al., GAs utilize three mechanisms 

(Section 2.4.3), and the PSO only uses two.  There is no specific selection function and 

no offspring generation as in the GA.  PSO uses leaders with specific velocities and 

directions to guide the search, but the GA uses fitness values and offspring to improve 

individuals.  Figure 2-7 illustrates the overall algorithm for PSO [19]. 

 
Figure 2-7: PSO Algorithm 

 In [20] the performance of the PSO with an adaptive inertia weight was studied, 

and the results of several test cases were illustrated.  This research utilized four nonlinear 

functions as their test cases: the Sphere function, the Rosenbrock function, the Rastrigrin 

function, and the Griewank function.  The Sphere function is described by Equation 3:   

𝒇𝟎(𝒙) = ∑ 𝒙𝒊𝟐𝒏
𝒊=𝟏                                                        (3) 

Where 𝑥 = [𝑥1 , 𝑥2, … , 𝑥𝑛] is an n-dimensional real-valued vector.  The second function, 

the Rosenbrock function is shown in Equation 4: 
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𝒇(𝒙)𝟏 = ∑ (𝟏𝟎𝟎�𝒙𝒊+𝟏 − 𝒙𝒊𝟐�
𝟐

+ (𝒙𝒊 − 𝟏)𝟐)𝒏
𝒊=𝟏                            (4) 

The third function is the generalized Rastrigrin function described by Equation 5. 

𝒇𝟐(𝒙) =  ∑ (𝒙𝒊𝟐 − 𝟏𝟎 𝐜𝐨𝐬(𝟐𝝅𝒙𝒊) + 𝟏𝟎)𝒏
𝒊=𝟏                                   (5) 

The last function, described in Equation 6, is the generalized Griewank function. 

𝒇𝟑(𝒙) = 𝟏
𝟒𝟎𝟎𝟎

∑ 𝒙𝒊𝟐 − ∏ 𝐜𝐨𝐬 �𝒙𝒊
√𝒊
� + 𝟏𝒏

𝒊=𝟏
𝒏
𝒊=𝟏                                  (6) 

  For the population initialization, they used what was considered an asymmetric 

initialization method.  In all four test cases, the shapes of the curves from the data show 

that the PSO converged quickly.  However, it began to slow its convergence speed down 

as it approached the optima.  This was attributed to the use of the linearly decreasing 

inertia weight, which prevented the PSO from having global search ability at the end of 

the case.  It was concluded that by using the linearly decreasing inertia weight, the 

performance of the PSO could be improved greatly when compared to the evolutionary 

algorithm used in [21].  Other conclusions made from this research were that the PSO 

resulted in similar performance with different population sizes and it scaled well for all 

four functions [20].  This research demonstrates the successful use of the PSO on several 

different nonlinear functions. 

2.4.3 Genetic Algorithms. 

An understanding of genetic algorithms (GA) is imperative to this thesis because 

it is the optimization method used in this design tool.  GAs are based on the genetic 

processes of biological organisms.  The basic structure of a GA consists of a randomly 

selected population of individuals.  These individuals represent a point in the design 
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space of possible solutions.  According to Arora, “The basic idea of a GA is to generate a 

new set of designs (population) from the current set such that the average fitness of the 

population is improved” [17].   

There are several different terms that make up the GA process.  A population is a 

set of design points at the current iteration.  Once the population is defined, the 

calculations are completed to create a new generation.  The tolerance is defined as the 

smallest change in the objective function between generations.  A chromosome is a 

synonym in a GA for an individual design point.  Lastly, there is a gene, which is a scalar 

valued component of the design vector [19]. 

There are three main parts that make up the GA: the objective function, the 

variables, and the constraints [22].  However, in this research, there are multiple objective 

functions, and the MATLAB multi-objective function GA cannot process non-linear 

constraints.  Therefore, in this thesis, the objective functions and design variables (gene) 

are the only parts that make up the GA.     

To implement a GA, an initial population is required.  This population creates a 

design space for the algorithm to work in.  After each individual in the population is 

evaluated by the value of the fitness function, a selection process is used to select a group 

of parents.  The parents are selected from the individuals with the lowest (this research is 

a minimization problem, so lower values are better) fitness values in the population [22].  

The parents are then paired off, and the string content is swapped between the parents in 

a pair during the crossover process [17].  Figure 2-8 illustrates the process of cutting 

chromosomes at a determined point and swapping the tails (crossover).  The resulting 

chromosomes from this process are called children [23]. 
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Figure 2-8: Crossover Operator 

After the crossover operation, the algorithm will perform a mutation operation.  The 

mutation operation is a probabilistic modification to the encoding of an individual 

chromosome [17].  Figure 2-9 demonstrates the process of flipping the value of a bit at a 

determined point.  The resulting chromosomes from this operation are called children as 

well [23].   

 
Figure 2-9: Mutation Operator 

 After the crossover and mutation operations are completed, a new generation is 

produced.  The new generation consists of a higher proportion of the genes possessed by 

the elite members of the previous generation [17].  Through this process, the strong 

characteristics are spread throughout the population over several generations.  By mating 
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most fit individuals in a population, the regions of the design space with the best chance 

for an optimal solution are explored.  Figure 2-10 illustrates the overall process for a GA 

[23]. 

 
Figure 2-10: GA Flowchart 

2.4.4 Computational Concerns. 

 GA’s can be applied to a wide range of problems, and they are fairly simple to use 

because they do not require the use of gradients.  However, there are several drawbacks 

in using this algorithm.  Even with a reasonably sized problem, GAs require a large 

amount of computation time, especially with problems that require massive calculations 

for the function values.  In this thesis, STK is performing the PDOP calculations.  As the 

number of satellites in the scenario increases, the time it takes for STK to compute all the 

accesses increases as well.  Since the time to calculate the function value increases, it 

adds to the overall computation time of the GA.  The GA does not guarantee a global 

solution, but it can be overcome by running the algorithm several times or by allowing it 

to run for longer periods.  This adds to the computational concern because with larger 
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generations and population sizes, the algorithm takes increasingly more time to compute 

solutions [17].   

 The computation time does pose concern for problems using this algorithm 

because without the proper amount of time, it is not guaranteed that accurate results will 

be determined.  In order to mitigate the large computation time, it is important to 

understand the problem being analyzed and develop a design space that will allow the 

GA to function efficiently.  For this research, several different test cases are used to 

analyze the design tool, so having multiple computer systems to operate the algorithm 

alleviates some of the concern associated with the computation requirements.     

2.4.5 Multi-Objective Genetic Algorithms 

  Multi-objective genetic algorithms are built on the same foundation as the GAs, 

so the procedures discussed in Section 2.4.3 still apply.  There are two general 

approaches to multi-objective optimization problems: combine the single objective 

functions into a combined function or determine a Pareto optimal set [24].  A Pareto 

optimal set is a set of solutions that cannot improve any of the objective function values 

without sacrificing the others.  The overall goal of a MOGA is to produce a Pareto 

optimal set, but identifying the entire set is infeasible due to its size.  Therefore, the 

practical method is to analyze the best-known Pareto set.   

 The concept of investigating a Pareto optimal set is often referred to as Pareto 

optimality.  Arora defines this as, “A point 𝑥∗ in the feasible design space S is Pareto 

optimal if and only if there does not exist another point x in the set, S such that 𝑓(𝑥) ≤

𝑓(𝑥∗) with at least one 𝑓𝑖(𝑥) < 𝑓𝑖(𝑥∗).”  Figure 2-11 illustrates dominate and non-
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dominate solutions along with the Pareto front.  Pareto optimal solutions are also referred 

to as non-dominated solutions, which means no other solution is better than them in all 

the objectives [25].  In this thesis, the objective functions are cost and PDOP, and it is 

desirable to minimize both of these functions.   

 
Figure 2-11: Pareto Front 

With Pareto optimality, a solution with high cost and low PDOP values can be 

Pareto optimal, along with a solution with low cost and high PDOP values [2].  To select 

designs for later generations, the MOGA possesses different selection techniques.  The 

method used in this work is considered ranking.  This process takes a given set of designs 

and evaluates the objective functions at each point.  Then each point is determined to be 

either dominated or non-dominated based on the comparison of the vector of objective 

function values at the given point [17].  Non-dominated points are given a rank of one 

and then removed from consideration.  The points that are non-dominating relative to the 

remaining group receive a rank of two.  This process continues until all the points are 
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ranked.  The points with the lowest rank possess the highest fitness value, and the points 

with high fitness values are selected for the next generation [17].    

 Since many real world engineering problems require the ability to analyze 

tradeoffs between multiple functions, the MOGA is a beneficial tool for optimization.  

The computation requirements do increase with multiple objective functions, so the user 

must be aware of the realities of the algorithm.  Also, customization of the MOGA 

approach is necessary in order to properly handle the different objective functions being 

analyzed.  It is not required to determine every Pareto optimal solution.  However, it is 

essential to identify Pareto optimal solutions across a certain range of interest for the 

objective functions [24].    

2.4.5.1 GA Based Constellation Design. 

An example of the use of a GA for constellation design is illustrated in [25].  The 

design of optimal satellite constellations is addressed.  A genetic algorithm termed, 

Modified Illinois Non-dominated Sorting Genetic Algorithm (MINSGA) was applied to 

several test cases to show the Pareto optimal region for multiple objectives.  The 

MINSGA was combined with STK to produce several constellation designs that yielded 

continuous global coverage. 

 The Pareto GA is based on the concept of non-dominating sorting.  The MINSGA 

replaces the stochastic remainder with stochastic universal selection.   The MINSGA was 

verified through several test cases and compared to the Non-dominated Sorting Genetic 

Algorithm (NSGA) from [26].  Six different test cases were used to demonstrate the 

accuracy and ability of the MINSGA to determine the Pareto optimal region.  The last 

three test cases were used to demonstrate the advanced capabilities of the algorithm. 
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 STK was used to calculate the values of the objective functions for each 

individual in the GA population.  The combination of the MINSGA and STK was given 

the term CODEC meaning Constellation Optimal Design by Evolutionary Computation.  

Five different test cases were used to establish the performance of CODEC.  The first test 

case is called Inclination Characterization, which determines the inclination range for a 

Walker 5/5/1 configuration.  CODEC correctly identified the region between 15 and 90 

degrees inclination as providing global coverage.  The second test case is called Walker-

Delta Configuration Study.  This case included the Walker configuration as part of the 

parameter set.  The goal was to demonstrate CODEC’s ability to handle multi-objective 

optimization because this case analyzed the trade between number of satellites and 

percent coverage.  Three solutions resulted from the test case, and all three provided 

global coverage.   

The third test case is called Open Structure with Fixed Inclination, and this case 

addressed continuous global coverage versus number of satellites but without restricting 

the constellation to a Walker Delta pattern.  The solution provided 99% continuous global 

coverage with a small portion of the poles out of view for a short period each day.  The 

fourth test case is Open Structure with Posigrade Inclination, which involved the same 

scenario from the third case.  However, the inclination was allowed to assume a 

posigrade value.  The solution from this analysis provides 99.7% continuous global 

coverage, with short coverage gaps near the poles, and with more time to evolve, the 

solution was expected to reach 100% coverage.  Lastly, the fifth test case is called Open 

Structure with Open Inclination, and this test case allowed the inclination to vary between 

0 and 180 degrees.  This configuration provides 99.2% global coverage, but it is not a 
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desirable configuration because the satellites possess retrograde inclinations.  Although 

the configuration is not desirable, it demonstrated the ability of the algorithm to create 

novel solutions to the problem [25].   

 The use of a Pareto genetic algorithm to perform satellite constellation design was 

demonstrated.  It showed that a group of solutions can be created, and it illustrated 

tradeoffs between performance and cost.  It also illustrated the success of incorporating 

pre-existing commercial software (STK) with a genetic algorithm. 

In [27] a genetic algorithm was applied to a different problem.  A genetic 

algorithm was used to generate sets of constellation designs.  Pareto fronts were used to 

show tradeoffs for two conflicting functions.   

 A baseline constellation design from William et al. was chosen and reconstructed 

using a multi-objective genetic algorithm [28].  The objective functions for the baseline 

research were to minimize both the maximum revisit time and the area-weighted average 

revisit time to a region of points representative of the entire Earth.  After the sparse-

coverage tradeoff analysis, a resolution tradeoff was constructed.  The temporal verses 

spatial resolution tradeoff for constellations of Earth-observing satellites was analyzed. 

 The baseline constellation was used for comparison, and the GA was used to 

determine the tradeoffs.  The GA approximated Pareto fronts for several different 

constellation designs.  The results matched those of William et al. in most cases, but for 

several designs, the GA was able to design constellations that performed better (lower 

maximum and area-weighted average revisit time) [28].  The fronts calculated possessed, 

on average, a greater spread and consisted of more non-dominated designs.  Since the 
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replication of the baseline problem was successful, the tradeoffs between spatial and 

temporal resolution were analyzed. 

 A multi-objective conflict arises as the altitude of a LEO satellite increases; the 

image quality decreases while the revisit time is improved.  The motivation in this study 

was to discover the sensitivity of the constellation design’s maximum revisit time to a 

small change in altitude.  With the test cases, it was discovered that a small change in 

altitude can affect the maximum revisit time negatively.  However, as the number of 

satellites increases, the discontinuities decrease, and the penalty paid in maximum revisit 

time is less severe.   

 Important considerations when applying a multi-objective genetic algorithm to a 

constellation design problem were highlighted.  The several approximated Pareto fronts 

that were generated were able to find designs that improved the objective functions 

significantly.  The random seed had the greatest impact on the results of the final 

generation, and to improve the number of generations needed, the multi-objective genetic 

algorithm must be less sensitive to the initial seed value.  It was also found that maximum 

revisit time was highly sensitive to small changes in altitude, and the resolution fronts 

exhibited discontinuous, nonlinear characteristics.  Overall, the use of a multi-objective 

genetic algorithm as a constellation design tool and the benefits of using a Pareto front to 

analyze tradeoffs in the objective functions were illustrated [27]. 

2.5 Navigation Metrics 

One of the most important concerns with the GPS constellation is the accuracy of 

its positioning and timing measurements.  The accuracy of a navigation constellation is 
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the true measure of its capability.  Position accuracy is determined by the geometry of the 

satellites overhead and accurate pseudorange7 measurements [4].  Along with analyzing 

the geometric errors of the constellation, signal strength is another factor that is necessary 

in the development of a navigation constellation.  Having the appropriate amount of 

transmit power is essential to ensuring suitable signal strength at the receiver.  The 

following sections will describe these topics.  

2.5.1 Geometric Errors. 

The satellite geometry in relation to the receiver at the time the signal is received 

affects the positon solution.  Dilution of Precision (DOP) is the term that describes the 

geometry of the satellites.   When satellites are efficiently distributed in the sky, the 

geometry is good for determining position, but if the satellites are too close together it 

results in poor geometry over the receiver [29].  With good geometry, the DOP values are 

low, and for poor geometry, the DOP values are high.  Figure 2-12 illustrates the concept 

of good and bad satellite geometry [29].   

                                                 
7 Pseudorange is simply the observed signal propagation delay scaled by the speed of light in a 
vacuum. 
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Figure 2-12: a) Poor satellite geometry b) Good satellite geometry 

 
In order to determine receiver position in three dimensions (xu, yu, zu) and the 

clock offset tu, pseudorange measurements should be made to four satellites which can be 

written as follows:  

𝝆 �𝒌  =   ��𝒙𝒌 − 𝒙 �𝒖� + (𝒚𝒌 − 𝒚�𝒖) + (𝒛𝒌 − 𝒛�𝒖) +  𝒄𝒕𝒖                        (7) 

Where 𝜌 �𝒌  is the approximate pseudorange between the receiver and the kth satellite, xk is 

the kth satellite position vector, and 𝑥 �𝑢 is the approximate receiver position vector.  These 

nonlinear equations can be solved through iterative techniques based on linearization.  If 

an estimate of the receiver position is known, the position offset is denoted 

as ∆𝑥𝑢,  ∆𝑦𝑢,  ∆𝑧𝑢.  The receiver position consists of the approximate position plus the 

position offset.  The linearized form of Equation 7 is shown below [23]. 

∆𝝆𝒌 = 𝒂𝒙𝒌∆𝒙𝒖 + 𝒂𝒚𝒌∆𝒚𝒖 + 𝒂𝒛𝒌∆𝒛𝒖 − 𝒄∆𝒕𝒖                               (8) 

Where, 
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∆𝜌𝑘 = 𝜌 �𝑘 − 𝜌𝑘 

𝑎𝑥𝑘 =
(𝑥𝑘 − 𝑥 �𝑢)

𝑟̂𝑘
 

𝑎𝑦𝑘 =
(𝑦𝑘 − 𝑦 �𝑢)

𝑟̂𝑘
 

𝑎𝑧𝑘 =
(𝑧𝑘 − 𝑧̂𝑢)

𝑟̂𝑘
 

𝑟̂𝑘 = ��𝑥𝑘 − 𝑥 �𝑢�
2

+ (𝑦𝑘 − 𝑦�𝑢)2 + (𝑧𝑘 − 𝑧̂𝑢)2 

These equations can be expressed in matrix form [23]: 

∆𝜌 = �

∆𝜌1
∆𝜌2
⋮

∆𝜌𝑛

�                 𝐻 =

⎣
⎢
⎢
⎡
𝑎𝑥1  𝑎𝑦1  𝑎𝑧1  −1
𝑎𝑥2 𝑎𝑦2 𝑎𝑧2 −1
⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑛 𝑎𝑦𝑛 𝑎𝑧𝑛 −1⎦

⎥
⎥
⎤
                 ∆𝑥 = �

∆𝑥𝑢
∆𝑦𝑢
∆𝑧𝑢
𝑐∆𝑡𝑢

� 

 

Using the least-squares solution, an estimate for x is determined: 

∆𝒙 = (𝑯𝑻𝑯)−𝟏𝑯𝑻∆𝝆                                                 (9) 

The (𝐻𝑇𝐻)−1 matrix is the DOP matrix, and it relates the measurement errors to 

the position errors.  The elements of (HTH)-1 are designated as: 

(𝑯𝑻𝑯)−𝟏 =

⎣
⎢
⎢
⎢
⎡ 𝝈𝒙

𝟐 𝝈𝒙𝒚 𝝈𝒙𝒛 𝝈𝒙𝒕
𝝈𝒙𝒚 𝝈𝒚𝟐 𝝈𝒚𝒛 𝝈𝒚𝒕
𝝈𝒙𝒛 𝝈𝒚𝒛 𝝈𝒛𝟐 𝝈𝒛𝒕
𝝈𝒙𝒕 𝝈𝒚𝒕 𝝈𝒛𝒕 𝝈𝒕𝟐 ⎦

⎥
⎥
⎥
⎤

                                          (10) 

It is possible to examine specific components instead of the overall solutions.  The 

specific components include: the three-dimensional receiver position coordinates, the 

horizontal coordinates, the vertical coordinates, or the clock offset [30].    These 
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components can be summarized by five DOP categories which include geometric 

(GDOP), horizontal (HDOP), vertical (VDOP), position (PDOP), and time (TDOP).  In 

this thesis, PDOP is the DOP category that is used to measure performance.  It is 

represented in Equation 11. 

𝑷𝑫𝑶𝑷 = 𝟏
𝝈�𝝈𝒙

𝟐 + 𝝈𝒚𝟐 + 𝝈𝒛𝟐                                                (11) 

When multiplied with the root mean square value, PDOP represents the magnitude of the 

total position error in all three dimensions.   

2.5.2 Signal Strength.  

Even though a navigation constellation is able to provide strong geometry over its 

receivers, it is important to ensure the signal is strong enough to be interpreted by its 

receivers.  Each receiver possesses a certain level of sensitivity, so the signal power must 

be above that level in order for the system to be decoded properly.  In this thesis, transmit 

power is a design variable that is used to determine satellite payload mass.  It is set at 

given altitudes to ensure the link is closed with each of the constellation designs.  Link 

closure is described as “the positive allocations (power) must balance with negative 

allocations (attenuation and other losses)” [7].    

To complete a link analysis, the budget entries that account for signal power must 

be analyzed along with noise factors.  The first section is the transmit power along with 

transmitter output losses. The main product of this section is the equivalent isotropic 

radiated power (EIRP), which equals the power of the transmitter plus the gain of the 

transmitter minus losses related to the hardware between the transmitter and antenna.  
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The second segment is the free-space and atmospheric losses (Ls), which is the largest 

loss factor.  It depends on the signal wavelength and satellite altitude, so the higher 

altitude, the larger the losses.   

The third section is the received power, which is dependent on the EIRP, gain of 

the receiver, and associated losses from the atmosphere and hardware.  Next, all 

significant sources of noise must be accounted for, and it is commonly referred to as 

system noise temperature (Ts).  Fourth, the ratio of the receiver gain and Ts is determined, 

and this factor is used to calculate the signal to noise ratio.  The next section determines 

the carrier-to-noise ratio, which is the ratio of the received signal power to noise.  The 

final step in the link analysis is to divide the carrier-to-noise ratio by the data rate to 

obtain 
𝐸𝑏
𝑁𝑜

.  Each receiver has a required 
𝐸𝑏
𝑁𝑜

 value, so the link margin is simply the 

predicted value minus the required value [7].  When the value is positive, it is considered 

positive link margin, and if it is negative, the signal strength is too low for the system to 

function properly.  The link is considered closed when the margin is zero.  For this 

research, the required receiver signal strength was known for GPS, so this process was 

rearranged to determine the transmit power needed at various altitudes in order to close 

the link.  See Appendix A-1 for details on the equations.         

2.6 Previous and Current Work 

Satellite constellation design is a vital process when it comes to the success of 

specific missions.  There are multiple types of constellations, all of which are applied to 

different missions.  The success of other projects in this field allows the design tools that 

already exist to be improved and to be applied to new scenarios.   
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2.6.1 Constellation Design. 

At the Air Force Institute of Technology (AFIT), Major Robert Thompson applied 

a multi-function, multi-orbit disaggregated space system optimization methodology to the 

space-based defense weather enterprise [31].  A GA was used as the optimization 

technique, and he utilized this method to assess and compare alternate space-based 

weather system conceptual architectures.  The overall objective of his analysis was to 

illustrate the applicability of the developed Disaggregated Integral Concept Optimization 

(DISCO) methodology to assess multi-function, multi-orbit disaggregation problems.   

The individuals used in his research consisted of the variables (genes): satellite 

planes, satellites per plane, satellite orbital height, sensor aperture diameter, sensor view 

angle, maximum vertical cell size, and number of launch vehicles.  The optimization 

model for the Weather System Follow-on (WSF) is attempting to minimize cost while 

subject to performance constraints.  The assessment models are subject to unmanned 

large and small satellite cost assessment models, dynamics coverage models, and sensor 

performance models.  A GA global optimization routine integrates the optimization and 

assessment models.  The results of his research demonstrated the applicability of the 

DISCO methodology to general multi-function disaggregated problems [31].   

 Following on to the research conducted by Major Thompson, Second Lieutenant 

(2d Lt) Evelyn Abbate, graduate of AFIT, also performed research using a GA [19].  The 

optimization model used in her research consisted of minimizing cost of a disaggregated 

constellation while subjecting the model to certain performance constraints.  She used 

Walker parameters, orbital elements, and sensor size as her design variables (genes).  

Each of these variables was applied to both large and small satellites.  The cost model in 
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her system was the same as the cost model used in this research, but the payload mass 

calculation is different in this thesis.   

 The results of her work demonstrated the successful use of a design tool 

consisting of MATLAB’s single objective GA and STK to optimize the cost of 

disaggregated constellations over a given target deck.  The results also illustrated that a 

constellation of large satellites, augmented with smaller satellites, could increase 

performance capabilities.  A constellation made up of small satellites could provide 

consistent coverage at a minimum National Image Interpretability Rating Scale (NIIRS) 

level of three with just a few large satellites to augment it.   

2.6.2 Navigation Systems. 

Although previous research has been performed in the area of constellation 

design, other research has been done in the area of navigation systems.  Major Bryan 

Bell, an AFIT graduate, focused specifically on the GPS constellation and the 

performance of the constellation in a degraded state [32].  He utilized STK to evaluate the 

PDOP values of alternate constellations and the combination of constellations to augment 

a degraded GPS state.  The main objective for his work was to develop a foundation for a 

basic Implementation Plan for restoring navigation capability.   

 Major Bell concluded from his research that the nominal GPS constellation of 24 

satellites can maintain an average PDOP less than six when two orbital planes are 

degraded.  However, if three or more orbital planes are degraded, the average PDOP is 

greater than six, which is not acceptable for mission success.  When augmented with the 

66-satellite Iridium constellation, the average PDOP remains less than six for losses of 
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four or fewer planes.  Average PDOP values are only greater than six when more than 

four planes are degraded when GPS is augmented with a highly elliptical orbit (HEO) 4/1 

Walker.  Lastly, the best PDOP values resulted when GPS was augmented with a GEO 

constellation of three satellites; there were no cases when four or fewer planes were lost 

where the average PDOP exceeded six.  His research demonstrated the improvement with 

average PDOP values when the GPS constellation was augmented with other 

constellations [32].  The tool presented in this thesis analyzes navigation constellation 

designs, and if combined with the results of Major Bell’s research, it could determine 

possible augmentation constellations for GPS.   

2.7 Applications  

At AFIT, the Spacecraft Systems Engineering course required several student 

groups to develop reports on their specific topic.  The Global Navigation Satellite System 

(GNSS) Design Group developed a project called G3, which represents GPS, GLONASS, 

and Galileo.  This group was tasked to augment the current GPS with a low cost satellite 

that is capable of providing a variety of signals in LEO [33].  The tool designed and 

analyzed in this thesis can be applied to the problem addressed in the G3 report.  The G3 

project performed an orbit selection analysis to determine the best orbit that met the 

requirements given in the problem.  The design tool in this thesis can be used to select an 

appropriate orbit design that minimizes cost and PDOP for a given altitude.  The group 

had to place constraints on their analysis to meet the requirements.  The design tool in 

this thesis cannot apply constraints, but it would aid in the analysis of what altitude is 

optimal and the resulting PDOP from the design.  From that point, the group would be 
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able to analyze the design further to ensure the appropriate requirements are met for the 

system.  This design tool could also aid in developing their project further by analyzing 

the tradeoffs of augmenting the current GPS with a constellation of satellites in LEO.  It 

would provide a method for determining the most efficient Walker and orbital parameters 

for the design.           

2.8 Summary 

 This thesis will use a MOGA to generate navigation constellation designs and 

analyze the tradeoffs between PDOP and cost.  Having knowledge of astrodynamics and 

constellation types will help in understanding how the design variables (genes) affect the 

constellation designs.  Discussing the optimization methods and examples illustrated 

other studies related to constellation design.  The geometric errors and signal strength 

description demonstrated the background for the PDOP calculation and the method in 

which to determine the signal strength for a system.  The next chapter will apply these 

concepts by detailing the specific models used in this thesis.    
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Chapter 3   
Methodology 

 The Air Force is looking for new methods to provide navigation that are less 

costly but still provide accurate positioning and timing.  The design tool presented in this 

thesis provides optimal batch Pareto fronts and illustrates the tradeoffs of the objective 

functions.  This chapter outlines the methodology used to develop the constellation batch 

Pareto fronts.  Validation of the design tool is demonstrated using the current GPS 

constellation.      

3.1 Problem Statement 

This research uses MATLAB’s MOGA along with STK to explore the trade space 

for navigation constellation designs at different orbital altitudes.  The objective is to 

analyze the tradeoffs between PDOP and cost of the different solutions.  Different design 

guidelines are inferred from using the optimized constellations.  Different test cases are 

analyzed to determine an optimal navigation constellation design at LEO, MEO, and 

GEO.  Using those results, hybrid navigation constellation designs are explored.      

3.1.1 Design Variables  

The MOGA determines the design vectors that reside within the specified bounds 

of each scenario.  The design variables for this research are separated into three 

categories: Walker parameters, orbital parameters, and transmit power.  The bounds 

varied with different altitudes to ensure STK had enough satellites to calculate PDOP.  If 

the lower bounds of planes and satellites per plane are too low, STK is unable to 

determine PDOP, and the tool does not run properly.  Determining the appropriate 
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bounds for different test cases requires input from the designer to analyze the solutions 

and adjust the bounds to produce more accurate results.  Table 3-1 summarizes the 

bounds of the parameters for the specific test cases used in this research. 

Parameters Units Bounds- 
Validation 

Bounds 
LEO 
Case1 

Bounds 
LEO 
Case2 

Bounds 
LEO 
Case3 

Bounds 
MEO 
Case1 

Bounds 
MEO 
Case2 

Bounds 
MEO 
Case3 

Bounds 
MEO 
Case4 

Bounds 
GEO 
Case 

#Planes - 5-8 10-15 9-15 8-15 6-15 3-11 4-11 3-9 2-10 
Sats/Plane - 2-6 10-15 9-15 8-15 6-15 3-11 4-11 3-9 3-10 
Truan deg 5-10 0-180 0-180 0-180 0-180 0-180 0-180 0-180 0-180 
RAAN Inc deg 50-70 0-180 0-180 0-180 0-180 0-180 0-180 0-180 0-180 
Alt km 20180-

20280 
725-
825 

1150-
1250 

1575-
1675 

2000-
2100 

10447-
10547 

18893-
18993 

27340-
27440 

35786-
35796 

Incl deg 40-60 40-80 40-80 40-80 40-80 40-80 40-80 40-80 30-80 
TX Power W 48.5 0.5 0.97 1.28 1.83 16.12 30.07 94.83 128.99 

Table 3-1: Design Parameters 

 Transmit power is included as a design variable that is directly related to payload 

mass.  With more power, the payload mass, spacecraft mass, and system cost increase.  

Because transmit power is directly related to cost, a method is developed to ensure 

transmit power also is related to PDOP.  Without developing a constraint for transmit 

power, the design tool produces solutions at high altitudes with small satellites because it 

results in lower costs.  To mitigate this problem, several test cases were created based on 

different altitudes.  Using the ranges of altitudes given in Section 2.1.1, a quarter of the 

distance from the beginning of LEO to the beginning of MEO was calculated as 425 km.  

This was used as the step size within the LEO range.  The test cases were built starting at 

300 km and increasing by the calculated step size.  However, the case at 300 km is not 

included due to computational limitations.  The lower altitude possessed many satellites 

which increased the computational burden for the PDOP calculations.  This caused errors 

that prevented the MOGA from computing.  Therefore, the first test case is at an altitude 

of 725 km.   
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The same process was used to determine the step size within the MEO range, and 

it was calculated as 8447 km. Once the altitudes for the test cases were determined, the 

calculations for link margin, described in Section 2.5.2, were used to determine the 

amount of transmit power needed at a given altitude to close link at the edges of the 

Earth.  This method limits the MOGA from varying transmit power and altitude, but it 

constrains the size of the satellites for the appropriate altitudes and guarantees link 

closure.  Since altitude is a large factor in both the cost and PDOP functions, the MOGA 

would only produce a couple design solutions on the Pareto front when altitude was set to 

a single value.  Therefore, to produce an accurate Pareto front with good distribution in 

points, a small range in altitude is used for each test case, but the appropriate transmit 

power is also included.     

3.1.2 Assumptions 

The batch Pareto fronts produced in this research depend on several assumptions.  

The calculation of PDOP, which is performed in STK, is an adequate metric for the 

scenario.  When STK calculates PDOP, it only offers users a couple options for the 

values: minimum, maximum, average, or percent below.  To capture the worst case 

values, the maximum values are determined for each global grid point over the simulation 

interval.  This research is analyzing the global PDOP value, so a single value for PDOP is 

needed.  Therefore, the median of the maximum values is used as the PDOP metric.  The 

median is used to measure the central tendency because the data distribution at lower 

altitudes is positively skewed.  Figure 3-1 illustrates the probability density function of 

PDOP in LEO.  The median give a more accurate measure of the central tendency for that 
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data.  The mean resides towards the lower end of the distribution, which is not the true 

measure of the central tendency.   Figure 3-2 and Figure 3-3 illustrate the probability 

density function for PDOP in MEO and GEO, respectively.  These figures demonstrate 

the median and mean values are either the same or very similar.  Therefore, for those 

cases, either measure would demonstrate the central tendency of the data.  The median 

was chosen as the measure because of its ability to show the central tendency for each of 

the three distributions.   

 

Figure 3-1: Probability Density Function of PDOP in LEO   
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Figure 3-2: Probability Density Function of PDOP in MEO 

 

Figure 3-3: Probability Density Function of PDOP in GEO 
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assumed no terrain limits, which is not necessarily realistic but cannot be directly 

addressed.  Real world includes skyscrapers and mountains that affect the satellites that 

are visible to a user on the ground.  

For the cost model, the costs are in fiscal year 2010 dollars (FY2010$).  All 

models are imperfect, and the cost models are approximations that should only be 

compared to solutions using the same models.  It is also assumed in the cost model that a 

communications payload is an appropriate representation of a navigation payload.  When 

determining launch vehicle cost, the average launch costs from [7] are used.  However, 

the costs are separated into LEO and GEO.  Therefore, it is assumed that any satellite at 

an altitude higher than 2000 km will use the launch vehicles available at GEO.  The only 

available launch vehicles are Pegasus XL, Minotaur IV, Falcon 9, Atlas 5, and Delta 4 

Heavy.   

All orbits that are developed and analyzed in this research are forced to be 

circular.  It is assumed that this will still show sufficient trends to develop guidelines. 

When calculating the transmit power required for each of the test cases, it is assumed that 

each satellite is equipped with a GPS antenna.  This assumption allows the use of the 

power and gain values from a GPS satellite in the link margin calculations.  Table 3-2 

summarizes the specifications for GPS at three different elevation angles.  The values for 

five degrees elevation were used in this analysis.  The shaded rows were not used in the 

calculations because several of the values were not needed in the link analysis.  Others, 

such as the range and path loss, were calculated based on altitude.  The only losses 

considered in the link budget are those mentioned in Section 2.5.2.  For each test case, a 
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required transmit power is determined, but each test case needs a small range in altitude 

in order for the MOGA to function properly.    

  Satellite at 5° 
Elevation 

Satellite at 
40° Elevation 

Satellite at 90° 
Elevation 

Range(km) 25240 22020 21190 
Satellite Antenna Gain, dB  12.1 12.9 10.2 
Effective Isotropic Radiated Power, dBW 26.4 27.2 24.5 
Path Loss, dB -159 -157.8 -157.1 
Atmospheric Loss, dB 0.5 0.5 0.5 
Received Power Density, dBW/m^2 -133.1 -131.1 -133.1 
Effective Area of an Omnidirectional 
Antenna, dBm2 25.4 25.4 25.4 

Receive Power Available from an Isotropic 
Antenna, dBW -158.5 -156.5 -158.5 

Gain of a Typical Patch Receive Antenna, 
dBic -4 2 4 

C/A Code Received Power Available to a 
Typical Receive Antenna, dBW -162.5 -154.5 -154.5 

Table 3-2: Gain and Power Specifications for GPS [34]    

3.1.3 Objective Functions 

For this research, PDOP and cost are the objective functions.  To ensure that each 

design results in PDOP values that can produce accurate positioning and timing, 

constellation designs with PDOP values less than six are analyzed.  The threshold of six 

is used to distinguish between desirable and poor constellation geometries.   

The cost model used in this thesis consists of the Unmanned Space Vehicle Cost 

Model, version 8 (USCM8) Theoretical First Unit (TFU), Non-Recurring Engineering 

(NRE), and Small Spacecraft Cost Model (SSCM) [7].  The USCM8 derives cost 

estimating relationships (CER) from a total of 44 satellites using statistical regression 

techniques to support parametric cost estimates of unmanned, earth-orbiting space 

vehicles with a communications payload.  For satellites with a mass less than 500 
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kilograms (kg), the SSCM is used.  Because this thesis includes an analysis of various 

size satellites, the cost models were scaled to account for the variety of satellite sizes 

included in the scenario.  Figure 3-4 illustrates the relationship of the objective functions 

to the MOGA.  The cost model is highlighted in yellow to re-iterate that it is a historic 

model used as an estimate in this simulation.   

 
Figure 3-4: Simulation Structure          

3.2 Constellation Analysis 

 This section describes the specific simulation parameters used to perform the 

analysis.  When initializing the STK program, the scenario is set to 48 hours with a 

scenario step size of five seconds.  The units for the scenario are set in kilometers.  Once 

a satellite is created in STK, it is defined using certain properties.  The classical elements 

are used to define the orbit, and the Two Body propagator is selected.  The step size for 

this object is 60 seconds.  For the coordinate type, Cartesian is chosen, and for the 

coordinate system, the International Celestial Reference Frame (ICRF) is used.   
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To analyze coverage, a coverage definition object is created in STK, and this 

object is set with a point granularity of six degrees.  The coverage is measured using a 

figure of merit (FOM).  The type of FOM is selected as dilution of precision, and it is 

computing the maximum.  PDOP is used as the method, and the type is set as over-

determined.  The time step for this object is 300 seconds.  For the MOGA, each test case 

may have a different number of generations and population size.  The number of design 

variables for each satellite type is eleven including the fixed variables.  Equation 12 

represents the design vector, X.  For the initial test cases, there is only one satellite type.  

For the hybrid constellation designs, there were two types of satellites.    

𝑿 = {[𝒘𝟏,𝒘𝟐, … ,𝒘𝟏𝟏]𝟏, … , [𝒘𝟏,𝒘𝟐, … ,𝒘𝟏𝟏]𝑵}                                   (12) 

Where N is the number of satellite types.  

3.3 Objective Function Calculations 

Using the assumptions and parameters defined above, the objective functions are 

calculated.  This section outlines the programming details for the objective functions.  

Each objective function is calculated in separate MATLAB files.  Then in the wrapper 

function, called navigation_gamultiobj.m, the fitness function is defined as the 

concatenation of both objective functions.  The function that calculates PDOP is called, 

PDOP.m, and the function that determines cost is cost.m.   

3.3.1 PDOP. 

The PDOP function accepts the design vector, X, and it outputs a global value of 

PDOP for that specific design.  Within this function, STK is called using the Connect 
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commands [35].  To improve computation time, the visibility for STK is set to zero, so 

the program does not display each time the PDOP function is called, but it runs in the 

background.  A STK scenario is created using the function navigation.m.  This 

function defines the scenario time and saves the scenario in a set location, which is 

determined by the user.  The user must ensure that the path location in PDOP.m matches 

the path file specified in navigation.m.  Within STK, a satellite constellation object 

is created and named NAVcon.   

Since Walker constellations are used in this analysis, a seed satellite is generated 

and called NAVSat.  Using the seed satellite, Walker constellations are generated using 

the specific Walker parameters in the X vector.  To analyze the coverage provided by the 

constellation, a coverage definition object is created and called Performance.  The 

coverage provided by the NAVcon constellation is measured with a FOM, which in this 

analysis is PDOP.  STK stores the PDOP values by latitude, and a matrix is formed with 

the following columns: latitude, minimum, maximum, average, standard deviation, count, 

and sum.  The maximum values are selected to analyze the worst case scenario for the 

specific design.  Lastly, the median of the column of maximum values is used as the final 

value for PDOP.       

3.3.2 Cost. 

The cost function consists of the launch vehicle cost, USCM8 NRE, USCM8 

recurring, and SSCM NRE.  Equation 13 represents the total cost used in this thesis. 

Total Cost = CostLV/Plane ∗ Nplanes + CostNRE ∗ Ndev + CostRecurring ∗ Nprod + CostSSCM ∗ Nprod  (13) 
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Where  

𝑁𝑃𝑙𝑎𝑛𝑒𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 𝑝𝑙𝑎𝑛𝑒𝑠 

𝑁𝑝𝑟𝑜𝑑 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑠 

𝑁𝑑𝑒𝑣 = 1 𝑤ℎ𝑒𝑛 𝑁𝑝𝑟𝑜𝑑 > 0 

3.3.2.1 Launch Vehicle Cost. 

This section details the calculations for launch vehicle cost.  Before the launch 

cost can be calculated, the spacecraft mass must be determined.  The spacecraft mass is 

calculated based on the mass of the payload.  To develop a relationship between transmit 

power and payload mass, a second order polynomial trend is created using transmit 

power and payload mass of GPS8, GLONASS9, Galileo10, and Beidou11.  Table 3-3 

illustrates the specific values used and Figure 3-5 shows the trend of the data.  

Equation 14 represents the payload mass equation generated from the trend-line in Figure 

3-5.   

 Transmit Power, W Payload Mass, kg 
Beidou 52 400  
GPS 50 347 
Glonass 40 250 
Galileo 25 112 

Table 3-3: Mass and Power for Navigation Constellations 

                                                 
8 GPS payload mass was estimated using the ratio of Glonass payload mass to total dry mass. The value of 
power is from [40].   
9 Glonass payload mass is from [39]. Its transmit power was estimated using the link budget equations. 
10 Galileo payload mass is from [38].  The transmit power is from [39]. 
11 Beidou payload mass is from [35]. The transmit power was estimated using the link budget equations. 
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Figure 3-5: Payload Mass Equation 

𝑚𝑎𝑠𝑠𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 0.116 ∗ 𝑝𝑜𝑤𝑒𝑟𝑡𝑥2 + 1.279 ∗ 𝑝𝑜𝑤𝑒𝑟𝑡𝑥 + 8.395               (14) 

See Appendix B for detailed equations and calculations of estimated GPS payload mass 

and transmit power values for GLONASS and Beidou.  Equation 15 is from SME-SMAD 

Table 14-18, and it represents the spacecraft dry mass.  

𝑺𝒑𝒂𝒄𝒆𝒄𝒓𝒂𝒇𝒕𝒅𝒓𝒚𝒎𝒂𝒔𝒔 = 𝒎𝒂𝒔𝒔𝒑𝒂𝒚𝒍𝒐𝒂𝒅
𝟎.𝟑𝟐

                                    (15) 

The total spacecraft mass is then calculated using Equation 16.  

𝑺𝒑𝒂𝒄𝒆𝒄𝒓𝒂𝒇𝒕𝒎𝒂𝒔𝒔 = 𝒎𝒂𝒔𝒔𝒑𝒂𝒚𝒍𝒐𝒂𝒅 + 𝑺𝒑𝒂𝒄𝒆𝒄𝒓𝒂𝒇𝒕𝒅𝒓𝒚𝒎𝒂𝒔𝒔                       (16) 

 The cost function accepts the design vector, X, along with a structure called lv. 

The lv structure defines the different characteristics of the launch vehicles used in this 

thesis.  All launch vehicle values are from [7].  The structure consists of two fields: mass 

and cost.  The mass field possesses two fields: bounds and alt.  The bounds field is a 
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matrix of the launch capacities for each vehicle at LEO and GEO.  The alt field is 

composed of 2000 km and infinity.  This field is used to determine what altitude the 

scenario is using to provide the proper launch capacity values.  The cost field is made up 

of average and efficiency.  The average field is a matrix of the average launch cost for the 

different vehicles.  The average launch cost includes the launch vehicle and related 

launch services [7].  The last field is a matrix of the cost efficiencies of the vehicles for 

LEO and GEO, which is measured as the cost per kilogram placed into orbit.  

 The launch vehicle analysis uses the spacecraft mass to determine which vehicle 

to use, how many vehicles to use, and launch cost.  When the scenario is at LEO, the 

choices include Pegasus, Minotaur, Falcon 9, Atlas V, and Delta4H.  Figure 3-6 

illustrates the capacity and cost as the number of launch vehicles increases.  The figure 

shows when certain vehicles may be more beneficial to use than others.  
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Falcon becomes better choice than 

 Minotaur becomes better choice than 

 

Figure 3-6: Launch Vehicles for LEO 
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When the scenario is at GEO, the available vehicles are Falcon 9, Atlas V, and Delta 4H. 

Figure 3-7 demonstrates that three Falcons are cheaper than one Atlas or Delta. 

 

Figure 3-7: Launch Vehicles for GEO 

After the spacecraft mass, number of launch vehicles, n, and the cost of those 

vehicles are determined for one orbital plane, it is then multiplied by the number of 

planes for total launch cost.  Equation 17 represents the launch cost per plane, CostLV/Plane.   
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𝐶𝑜𝑠𝑡𝐷𝑒𝑙𝑡𝑎 ⎦

⎥
⎥
⎥
⎤

        (17) 

3.3.2.2 SME-SMAD Cost Models. 

This section explains the specific equations used for the spacecraft cost.  The cost 

function, Equation 13, calculates cost in 2010 thousands of dollars for the entire system.  

The three cost models included in the cost function can be seen in Table 3-4 [7].  Figure 
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3-8: Diagram of Cost Model is a diagram of the three cost models from SME-SMAD and 

how they are combined for this thesis.  Equation 18 represents the USCM8 NRE model.   

𝐶𝑜𝑠𝑡𝑁𝑅𝐸 = 𝐶𝑜𝑠𝑡𝑠/𝑐_𝑏𝑢𝑠 + 𝐶𝑜𝑠𝑡𝑃𝑎𝑦𝑙𝑜𝑎𝑑 + 𝐶𝑜𝑠𝑡𝐼𝐴&𝑇 + 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑔𝑟𝑎𝑚_𝑙𝑒𝑣𝑒𝑙 + 𝐶𝑜𝑠𝑡𝐴𝐺𝐸          (18) 

Where,  

        𝐶𝑜𝑠𝑡𝑠/𝑐_𝑏𝑢𝑠 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 𝑏𝑢𝑠 

𝐶𝑜𝑠𝑡𝑃𝑎𝑦𝑙𝑜𝑎𝑑 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 

                                𝐶𝑜𝑠𝑡𝐼𝐴&𝑇 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛,𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦,𝑎𝑛𝑑 𝑡𝑒𝑠𝑡 

                   𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑙𝑒𝑣𝑒𝑙 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑙𝑒𝑣𝑒𝑙 

                                 𝐶𝑜𝑠𝑡𝐴𝐺𝐸 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑒𝑟𝑜𝑠𝑝𝑎𝑐𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 

Each component seen above is defined respectively in Table 3-4.  Equation 19 illustrates 

the USCM8 recurring cost. 

𝐶𝑜𝑠𝑡𝑟𝑒𝑐𝑢𝑟𝑟𝑖𝑛𝑔 = 𝐶𝑜𝑠𝑡𝑠/𝑐_𝑏𝑢𝑠 + 𝐶𝑜𝑠𝑡𝑃𝑎𝑦𝑙𝑜𝑎𝑑 + 𝐶𝑜𝑠𝑡𝐼𝐴&𝑇 + 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑔𝑟𝑎𝑚_𝑙𝑒𝑣𝑒𝑙 + 𝐶𝑜𝑠𝑡𝑓𝑙𝑖𝑔ℎ𝑡_𝑠𝑢𝑝𝑝𝑜𝑟𝑡    (19) 

Where, each component is defined respectively in Table 3-4, and the same notation is 

used from above.  Equation 20 represents the SSCM NRE cost. 

𝐶𝑜𝑠𝑡𝑆𝑆𝐶𝑀 = 𝐶𝑜𝑠𝑡𝑠/𝑐_𝑏𝑢𝑠 + 𝐶𝑜𝑠𝑡𝑃𝑎𝑦𝑙𝑜𝑎𝑑 + 𝐶𝑜𝑠𝑡𝐼𝐴&𝑇 + 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑔𝑟𝑎𝑚_𝑙𝑒𝑣𝑒𝑙 + 𝐶𝑜𝑠𝑡𝑓𝑙𝑖𝑔ℎ𝑡_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 + 𝐶𝑜𝑠𝑡𝐴𝐺𝐸         (20) 

Where, each component is defined respectively in Table 3-4. 
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SME-SMAD Cost Models, FY2010$ 
USCM8 Non-recurring Subsystem CERs in FY2010 Thousands of Dollars 

Element Equation Variable Reference 
1 Spacecraft Bus 110.2*X X=Spacecraft weight (kg) Table 11-8 

2 Payload 618*X X= Communications subsystem weight 
(kg) Table 11-8 

3 Integration, Assembly, and 
Test 0.195*X X=Spacecraft bus + Payload non-

recurring cost ($K) Table 11-8 

4 Program Level 0.414*X X=Space vehicle and IA&T non-
recurring cost ($K) Table 11-8 

5 Aerospace Ground 
Equipment (AGE) 0.421*X10.907*2.244X2 

X1=Spacecraft bus non-recurring cost 
($K) 
X2=0 for comm sats 
X2=1 for non-comm sats 

 
Table 11-8 

USCM8 Spacecraft Bus Recurring T1 CERs in FY2010 Thousands of Dollars 
Element Equation Variable Reference 

1 Spacecraft Bus 289.5*X0.716 X=Spacecraft weight (kg) Table 11-9 

2 Payload 189*X X= Communications payload weight 
(kg) Table 11-9 

3 Integration, Assembly, and 
Test 0.124*X X=Spacecraft Bus + Payload Recurring 

Cost ($K) Table 11-9 

4 Program Level 0.320*X X=Spacecraft Recurring Cost ($K) Table 11-9 
5 Flight Support 5850 - Table 11-9 

SSCM Total Non-recurring Cost (development plus one protoflight unit) 
Element Equation Variable Reference 

1 Spacecraft Bus 1064+35.5*X1.261 X=Spacecraft weight (kg) Table 11-
11 

2 Payload 0.4*X X= Spacecraft Bus Total Cost ($K) Table 11-
11 

3 Integration, Assembly, and 
Test 0.139*X X=Spacecraft Bus Total Cost ($K) Table 11-

11 

4 Program Level 0.229*X X=Spacecraft Bus Total Cost ($K) Table 11-
11 

5 Flight Support 0.061*X X=Spacecraft Bus Total Cost ($K) Table 11-
11 

6 Aerospace Ground 
Equipment (AGE) 0.066*X X=Spacecraft Bus Total Cost ($K) Table 11-

11 

Table 3-4: SME-SMAD Cost Models 
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Figure 3-8: Diagram of Cost Model 
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3.4 Optimization Methodology 

This section covers how the MOGA generates a population using the bounds on 

the design parameters and then eventually reaches batch Pareto fronts.  To begin the 

optimization methodology, the proper bounds for the design parameters must be defined.  

An initial population is generated using the lower and upper bounds that are defined for 

each parameter.  The algorithm creates a new generation using individuals in the current 

generation.  The selection process is used to produce new populations.  Once the stopping 

criterion is met, the algorithm stops.  The stopping criterion used in this thesis is the total 

number of generations.    

3.4.1 Population Size. 

Population size and the number of generations are defined by the user.  It is 

beneficial to create an initial population that provides a decent tradeoff between 

efficiency and effectiveness.  The algorithm may not effectively search the space if the 

population size is too small, but if it is too large, the efficiency of the algorithm is 

significantly reduced to determine optimal solutions in a reasonable time of computation.  

The same logic applies for the generation size.  For this thesis, the population size was 30 

and the number of generations was 30.   

3.4.2 Selection. 

To create the new population, the algorithm scores each individual of the current 

population by computing its objective value.  The raw fitness scores, (PDOP, cost) are 

scaled to convert them into a useful range of values.  Based on their fitness, parents are 

selected from the population.  The likelihood of selection is inversely proportional to how 
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low their score is. The parents contribute their genes (entries of their vectors) to their 

children [17].  

3.4.3 Mutation and Crossover. 

Once the algorithm selects the parents from the population, the process to create 

children begins.  Two operators were used: mutation and crossover.  Mutation is one of 

the functions used to create children.  Mutation children are created by randomly 

changing the genes of the individual parents.  Mutation adds diversity to a population, 

and it increases the chances the algorithm will generate individuals with better fitness 

values.  The crossover function is another function used to create children.  This function 

randomly selects a vector entry from one of the two parents and assigns it to the 

corresponding entry for the child.  Crossover allows the algorithm to take the best genes 

(parameters that result in low PDOP and cost) from different individuals and recombine 

them into superior children.  In this thesis, the mutation and crossover functions specified 

that certain design parameters be integer values [17].  Equation 21 represents the 

variables that were integer values.          

𝑿 = [𝒘𝟏,𝒘𝟐,𝒘𝟓 …𝒘𝟏+(𝑵−𝟏)∗𝟏𝟏,𝒘𝟐+(𝑵−𝟏)∗𝟏𝟏,𝒘𝟓+(𝑵−𝟏)∗𝟏𝟏]             (21) 

Where N is the number of satellite types.  

3.4.5 Stopping Conditions. 

The MOGA uses three different conditions to determine when to stop.  Defining 

the total number of generations tells the algorithm to finish once the number of 

generations reaches the defined value.  Another condition is when the average change in 
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the spread of the Pareto front is less than the user defined tolerance.  The last condition is 

a time limit which, unless specified, is infinity.  The reason for termination is output 

when the MOGA finishes [36] .  For this thesis, the stopping criterion was the generation 

number.    

3.5 Validation 

To demonstrate that the design tool used in this thesis produces reasonable cost 

and performance values, the current GPS constellation is used to compare the values 

produced by the MOGA.        

3.5.1 PDOP. 

A separate MATLAB file, called GPS_constellation.m, was created to 

upload a GPS almanac to STK and generate the current GPS constellation.  The same 

process from PDOP.m is used in this file to calculate a global value for PDOP.  Because 

the median of the maximum values for PDOP is used as the objective function value for 

the MOGA, the same value was determined for the GPS constellation.  STK calculated a 

PDOP value of 1.42 for the GPS constellation.  This value is used to compare the PDOP 

values and design solutions generated from the MOGA.   

To produce a design vector from the MOGA that matched the GPS, the design 

parameters were constrained to values close to those of the current GPS constellation.  

Table 3-1 illustrates the specific lower and upper bounds used in the validation case.  The 

MOGA generated a Pareto front for these specific bounds.  Figure 3-9 illustrates the 

Pareto front and shows the different number of planes and satellites per plane for the 

various solutions.  The design solution that represents the current GPS is highlighted on 
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the Pareto front.  Table 3-5 shows the objective function values for the design solutions 

generated for this case.  Solution 3 is highlighted in green to show the relationship to the 

GPS design solution on the Pareto front.  

 
Figure 3-9: Validation Case 

 Cost (FY2010 thousands of dollars) PDOP 
Solution 1 $ 3,587,470.35 3.44 
Solution 2 $ 4,137,991.85 1.93 
Solution 3 $ 4,555,058.80 1.44 
Solution 4 $ 6,795,224.89 1.26 
Solution 5 $ 6,837,865.44 1.23 
Solution 6 $ 7,708,226.78 1.16 
Solution 7 $ 8,987,404.19 1.05 
Solution 8 $ 9,005,979.28 1.04 

Table 3-5: Validation Results 
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Parameters MOGA Results GPS Values 
#Planes 6 6 
Sats/Plane 4 4 
Truan, deg 5.4 - 
RAAN Inc, deg 68.9 - 
Alt, km 20,220 20200 
Incl, deg 54.64 55.00 
TX Power, W 48.90 50.00 

Table 3-6: Validation Design Parameters 

 The MOGA successfully generated a design solution that roughly matched the 

current GPS constellation.  Table 3-6 illustrates the design parameters generated by the 

MOGA for Solution 3.  Section 2.2 discussed that the current GPS constellation has 6 

orbital planes with four satellites per plane at an altitude of 20,200 km and is inclined to 

55 degrees.  The value for PDOP for Solution 3 is compared to the PDOP value 

generated for the current GPS constellation.  Using the current GPS constellation PDOP 

value as the exact value, the percent error for the PDOP generated by the MOGA is 

1.41%.  These results validate that the design tool used in this thesis is capable of 

generating optimal navigation constellation design solutions.     

3.5.2 Cost Function. 

  Since the current GPS constellation is used to compare the design tool results in 

this thesis to a real-world system, the cost value is compared with the cost of GPS Block 

III satellites.  To compare the cost produced in the algorithm to the price per unit value 

for GPS Block III satellites, the launch cost was subtracted from the total cost generated 

by the MOGA.  The total then is $4.21 billion.  Using the unit cost of GPS Block III from 

[37], the cost generated by the MOGA is within 22% of that value.    
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3.6 Refining Results 

Once the MOGA generates design solutions for the test cases used in this thesis, 

the results are refined.  The lower and upper bounds for the design parameters need to be 

well defined for each different test case.  For example, when analyzing results at 725 km, 

the amount of orbital planes and satellites per plane will be higher than a case at 

20,000 km.  If the design space defined for a certain test case is not well-suited, the 

Pareto front will show PDOP results much higher than the guideline set at six.  There will 

also be a poor distribution in solutions.   

When the results of a test case produce values for PDOP above 6, the results are 

refined by removing the invalid points and plotting the remaining points; however, the 

distribution in the points remains the same.  For some cases, the distribution in solutions 

is poor.  To improve this, the design space may need to be adjusted to adequately handle 

the specific test case.  The bounds for certain design parameters may need to increase to 

allow for a larger design space.  If a test case results in a design vector that possesses 

values for parameters that are equal to their corresponding lower bound value, it is 

concluded that decreasing the lower bound value to open the range for that parameter is 

beneficial to the MOGA.  This method of refinement improves the design space for the 

MOGA and produces strong Pareto fronts for each test case.      

3.7 Summary  

 This chapter outlined the design parameters, test cases, and equations used within 

the design tool.  The objective functions and optimization process were discussed.  The 

GPS constellation was used to compare the results of the design tool to a real-world 

system.  The design solutions and analysis will be presented in Chapter 4.  
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Chapter 4   
Results 

 The MOGA was used to analyze several different test cases based on altitude.  

Each test case required multiple runs to ensure valid results.  LEO, MEO, and GEO 

altitudes were analyzed separately to determine possible design solutions (Section 4.1.1 

thru Section 4.1.4).  Hybrid constellations were analyzed as well.  Trade-offs in each of 

the altitude ranges are discussed, and an analysis of the designs compared to the current 

GPS is given.  Limitations of the work are also outlined in this chapter.   

4.1 Results of the Simulation 

The results of the simulation are separated based on altitude to demonstrate the 

initial design solutions.  Each altitude range demonstrates different PDOP and cost 

values.  The number of satellites required to obtain PDOP less than six decreases as the 

altitude increases.  The cost values vary based on scenarios, but the general trend is that 

navigation constellations in LEO result in lower cost than MEO and GEO constellations.   

4.1.1 LEO Results. 

 There were three test cases conducted within the LEO altitude range.  Each test 

case resulted in Pareto fronts that demonstrated an improvement in performance for a 

higher cost.  The LEO test cases had better results as altitude increased.  The LEO results 

generated by the MOGA confirmed the expected trends between PDOP and cost, and 

they dominated the MEO results.   

The results from the LEO altitudes were compared to determine the design 

solutions with the lowest PDOP and cost values.  Figure 4-1 illustrates the three LEO 
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Pareto fronts together.  The most desirable solution is the solution around the concave 

portion of the Pareto front.  These solutions were chosen from the individual Pareto 

fronts rather than those seen in Figure 4-1 since the scaling in the comparison figure 

makes it difficult to see the concave portion. See Appendix C for the Pareto fronts of the 

individual test cases.  

 
Figure 4-1: LEO Test Cases 

The lowest altitude resulted in higher PDOP values and higher cost.  This trend 

continued as the middle altitude had higher PDOP and cost values than the highest 

altitude.  The points selected as the desirable solutions show that the highest altitude 

completely dominated the Pareto fronts at lower altitudes.  Table 4-1 illustrates that when 

PDOP remains close to two, the cost decreases dramatically as altitude increases.  Table 

4-2 demonstrates that when cost remains relatively the same, PDOP decreases as altitude 
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increases, but not as dramatically as the cost.  Therefore, as altitude increases, there is 

more benefit in the cost than in the performance of the constellation designs produced 

within the LEO altitude range.     

 PDOP Cost ($B) 
725 km 2 0.99 
1150 km 2 0.55 
1575 km 2 0.45 

Table 4-1: Cost Tradeoff for LEO Test Cases               

 PDOP Cost ($B) 
725 km 3.34 0.6 
1150 km 1.82 0.6 
1575 km 1.51 0.6 

Table 4-2: PDOP Tradeoff for LEO Test Cases  

4.1.2 MEO Results. 

Within the MEO altitude range, there were four test cases that were analyzed.  

Each of the test cases illustrated an increase in cost for better PDOP values.  The MEO 

results produced lower PDOP values than those in the LEO altitudes.  The results verified 

the consistent trend between PDOP and cost.  

To determine the difference in results for the MEO test cases, the four Pareto 

fronts were compared in Figure 4-2.  The number of satellites required to produce the 

PDOP values decreased with altitude as seen in the LEO cases as well.  Unlike the LEO 

test cases, there was a large difference in cost for the test cases in MEO when PDOP 

remained constant.  The trend for the cost of the design solutions did not match the trend 

seen in LEO.        
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Figure 4-2: MEO Test Cases 

 When PDOP remains constant around 1.5, the last three altitudes show an 

increase in cost with an increase in altitude.  The lowest altitude resulted in a higher cost 
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dollars, Table 4-4 illustrates that the second MEO altitude possessed the lowest PDOP 
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 PDOP Cost ($B) 
2000 km 1.5 4.9 
10447 km 1.5 1.3 
18893 km 1.5 2.5 
27340 km 1.5 12.4 

Table 4-3: Cost Tradeoff for MEO Test Cases 

 PDOP Cost ($B) 
2000 km 2.37 3.9 
10447 km 0.78 3.9 
18893 km 1.14 3.9 
27340 km None 3.9 

Table 4-4: PDOP Tradeoff for MEO Test Cases 

To explain the unique trend in cost seen in the MEO range, the spacecraft and 

launch cost for one solution from each altitude test case was determined.  The solution 

with a PDOP of around 1.5 was selected from each altitude for the comparison in cost.  

As a result of the larger step size in altitude used for the MEO range, there is a larger 

difference in the size of the satellites used in these designs.  To determine whether the 

price is more quantity driven or size driven, Table 4-5 illustrates the difference in 

constellation cost values between each of the MEO cases.   

The highest altitude, MEO case 4, resulted in the most expensive design as seen in 

Table 4-3.  This is attributed to the large size in satellites required for that altitude.  When 

compared to each of the other cases, the spacecraft cost for this altitude was the primary 

reason for the high cost values.  MEO case 1, which is the lowest MEO altitude, 

possessed the next most expensive design.  Table 4-5 shows that the price for this test 

case was driven by the large quantity of satellites required.  This altitude required the 

most number of satellites to produce PDOP values less than six, and as a result, it 

required the most number of launch vehicles.  MEO case 3 resulted in more expensive 
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designs than MEO case 2, and this is driven by satellite size, as seen in Table 4-5.  After 

comparing the MEO results, MEO case 2 possessed the lowest PDOP value when cost 

remained constant and the lowest cost when PDOP was set at 1.5.  

MEO 
Test 
Case 

Altitude 
(km) PDOP #Planes 

# 
Satellites 

# 
Launch 
Vehicles 

Cost Per 
Satellite 
($B) 

Total 
Satellite 
Cost 
($B) 

Total 
Launch 
Cost 
($B) 

1 2000  1.5 8 88 8 0.42 36.80 0.45 
2 10447  1.5 4 32 4 0.85 27.30 0.23 
3 18893  1.5 5 25 5 1.92 48.00 0.28 
4 27340  1.5 4 24 20 11.30 271.00 1.14 

Table 4-5: MEO Cost Comparisons 

4.1.3 GEO Results. 

The last altitude range was at GEO.  An altitude range of 35786-35796 km was 

used for this test case.  There were fewer designs solutions with PDOP values less than 

six for this test case.  Therefore, the Pareto front did not include as many solutions.  The 

solutions continued to follow the expected trend of an inverse relationship between 

PDOP and cost.   

4.1.4 Comparison. 

 Since there is such a large difference in cost between LEO, MEO, and GEO, only 

the dominating Pareto front from LEO and MEO were used to compare with the GEO 

designs.  Figure 4-3 shows the comparison of the Pareto fronts for the different altitude 

ranges.         
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Figure 4-3: LEO, MEO, and GEO Comparison 
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cost than the MEO and GEO designs for a PDOP of 1.5.  For a cost of about $1.3 billion, 

the LEO design resulted in a lower PDOP value than the MEO, and the GEO results did 

not produce a PDOP value for that price (Table 4-7).  This price is the only price that 

resulted for LEO and MEO.  There are no common prices between GEO and the lower 
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 PDOP Cost ($B) 
LEO 0.90 1.3 
MEO 1.53 1.3 
GEO None 1.3 

Table 4-7: PDOP Tradeoff for LEO, MEO, and GEO 

 To compare the cost of the designs at the different altitude ranges, Figure 4-4 

illustrates cost as altitude increases, and Figure 4-5 shows cost as the number of satellites 

increases.  Figure 4-4 demonstrates that the GEO constellation designs are more 

expensive than the MEO and LEO designs.  All but one of the MEO designs are more 

expensive than the LEO designs.  There is one solution that overlaps with the LEO 

results.  The number of satellites is greater in LEO than in GEO, but there are some MEO 

designs that possess the same number of satellites as LEO.  For each altitude range, the 

cost increases as the number of satellites increases (Figure 4-5).  The trend of altitude 

versus cost is affine for each of the altitudes.    

 
Figure 4-4: Altitude vs. Cost Comparison 
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Figure 4-5: Cost vs. Total Satellites Comparison 
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similar PDOP values when PDOP is lower than two.  Figure 4-7 shows the PDOP values 
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Figure 4-6: PDOP vs. Altitude 

 
Figure 4-7: PDOP vs. Total Satellites Comparison 
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4.1.5 Hybrid Constellation Results. 

The design tool used in this thesis has the ability to analyze multiple satellite 

types.  Therefore, three hybrid constellations were analyzed: a LEO-MEO hybrid, a LEO-

GEO hybrid, and a MEO-GEO hybrid.  Figure 4-8 demonstrates the Pareto front from the 

LEO-MEO hybrid designs with the individual altitude designs from LEO and MEO.  The 

hybrid constellation Pareto front fell very close to the MEO Pareto front.     

 
Figure 4-8: LEO, MEO, and LEO-MEO Hybrid Comparison 

 For a PDOP value of one, the LEO results still possessed a lower cost than the 
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number of planes and number of satellites per plane.  As a result, the MOGA did not have 

the option of selecting only MEO satellites or only LEO satellites for the constellations.  

The cost for the hybrid design is close to the individual MEO cost because the MOGA 

could select a LEO constellation design, but it was required to have at least four MEO 

satellites.  This is a possible reason for the cost of the hybrid design being greater than the 

individual LEO designs.     

 PDOP Cost ($B) 
LEO 1 1.27 
MEO 1 2.08 

LEO-MEO Hybrid 1 2.44 
Table 4-8: Cost Tradeoff for LEO, MEO, and LEO-MEO Hybrid 

At a constant price of $1.3 billion, the PDOP values showed an increase, with 

LEO possessing the lowest value and the hybrid possessing the highest value (Table 4-9).  

As demonstrated with the cost tradeoff, the PDOP value for the hybrid design was much 

closer to the MEO value.  This demonstrates that there is no additional benefit in utilizing 

a LEO-MEO hybrid constellation.      

 PDOP Cost ($B) 
LEO 0.90 1.3 
MEO 1.49 1.3 

LEO-MEO Hybrid 1.53 1.3 

Table 4-9: PDOP Tradeoff for LEO, MEO, and LEO-MEO Hybrid 

Figure 4-9 compares the trends of PDOP and total number of satellites for each 

altitude range along with the LEO-MEO hybrid designs.  The hybrid design fell right 

between the LEO and MEO designs.  The PDOP values were lower than LEO and MEO, 

but the number of satellites required was the same as MEO for PDOP greater than one 

and the same as LEO for PDOP less than one.   
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Figure 4-9: PDOP vs. Total Satellites for LEO-MEO Hybrid 

Table 4-10 illustrates the separate number of LEO and MEO satellites within the 

hybrid designs.  As PDOP increases, the number of satellites decreases, but for all but 
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PDOP Total LEO Satellites Total MEO Satellites 
0.64 100 100 
0.67 90 90 
0.71 90 80 
0.80 72 70 
0.90 42 54 
1.00 56 40 
1.13 45 40 
1.13 56 32 
1.33 32 32 
1.48 35 24 
1.60 28 24 

Table 4-10: Number of LEO and MEO Satellites in the Hybrid Designs 

 Figure 4-12 illustrates the individual LEO and GEO Pareto fronts compared to the 

LEO-GEO hybrid Pareto front.  The hybrid front fell close to the GEO Pareto front, and 

showed some overlap in cost.  Table 4-12 and Table 4-13 show the cost and PDOP 

tradeoffs.  
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 When cost is analyzed for a PDOP of one, the individual LEO design has the 

lowest cost, and the individual GEO has the highest cost (Table 4-12).  The LEO-GEO 

hybrid cost value was close to the cost value for GEO.  This is attributed to the same 

issue mentioned for the LEO-MEO hybrid.  The MOGA had to select satellites for both 

altitudes, so the cost would automatically be driven to higher costs than LEO.  

 PDOP Cost ($B) 
LEO 1 1.27 
GEO 1 41.13 

LEO-GEO Hybrid 1 30.69 

Table 4-12: Cost Tradeoff for LEO, GEO, and LEO-GEO Hybrid 

 When PDOP is analyzed for a constant cost of $30 billion, the LEO altitude does 

not have a design because the LEO designs have a much lower cost value.  The LEO-

MEO hybrid resulted in a slightly lower PDOP value than GEO.  The cost and PDOP 

values for the hybrid designs remain closer to the higher individual altitude just as was 

shown for the LEO-MEO hybrid results.  

 PDOP Cost ($B) 
LEO None 30 
GEO 1.16 30 

LEO-GEO Hybrid 0.91 30 

Table 4-13: PDOP Tradeoff for LEO, GEO, and LEO-GEO Hybrid 

 Figure 4-10 shows the change in the number of satellites for each altitude as the 

PDOP decreases.  The hybrid design shows a similar number of satellites to LEO for a 

PDOP of close to one.  Table 4-14 illustrates the number of satellites at the GEO altitude 

and LEO altitude within the hybrid designs.  The number of GEO satellites is never 

greater than the number of LEO satellites.   
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Figure 4-10: PDOP vs. Total Satellites for LEO, GEO, and LEO-GEO Hybrid 

PDOP Total LEO Satellites Total GEO Satellites 
0.58 100 100 
0.65 81 81 
0.71 81 64 
0.90 80 35 
3.83 40 8 

Table 4-14: Number of LEO and GEO Satellites in the LEO-GEO Designs 
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 The MEO-GEO hybrid constellation was compared to the individual MEO and 

GEO designs in Figure 4-11.  The hybrid constellation’s Pareto front fell between the 

MEO and GEO Pareto fronts.  Table 4-15 and Table 4-16 demonstrate cost and PDOP 

tradeoffs.            

 
Figure 4-11: MEO, GEO, and MEO-GEO Hybrid Comparison 
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 PDOP Cost ($B) 
MEO 1 2.44 
GEO 1 41.13 

MEO-GEO Hybrid 1 18.10 

Table 4-15: Cost Tradeoff for MEO, GEO, and MEO-GEO Hybrid 

 For a cost of $30 billion, there is not a MEO design available because the MEO 

designs possess a much lower cost value.  The MEO-GEO hybrid resulted in a lower 

PDOP value than the GEO results.  They are still relatively close, as seen in the previous 

cases.  

 PDOP Cost ($B) 
MEO None 30 
GEO 1.16 30 

MEO-GEO Hybrid 0.79 30 

Table 4-16: PDOP Tradeoff for MEO, GEO, and MEO-GEO Hybrid 

 The PDOP values as the number of satellites increased was analyzed for this 

hybrid constellation in Figure 4-12.  For a PDOP of one, the MEO results show a larger 

number of satellites than the GEO and MEO-GEO results.  The GEO and MEO-GEO 

results require the same number of satellites.  Table 4-17 shows the number of satellites 

for MEO and GEO within the hybrid designs.  The same trend continues, where there are 

fewer satellites in the higher altitude range for the hybrid designs.    
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Figure 4-12: PDOP vs. Total Satellites for MEO-GEO Hybrid 

PDOP Total MEO Satellites Total GEO Satellites 
0.75 48 30 
0.75 24 12 
0.78 35 16 
0.82 20 12 
0.83 48 24 
0.84 35 15 
0.87 42 30 
1.00 48 24 
1.05 48 36 
1.24 48 36 
1.41 48 20 

Table 4-17: Number of MEO and GEO Satellites in the MEO-GEO Designs 

For each of the hybrid constellations that were analyzed, they produced similar 

PDOP values to the lower altitude designs, but required a much higher cost.  Therefore, 
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designs.  This could also be a result of the hybrid constellations requiring satellites at 

each altitude.  Therefore, the cost of the more expensive (satellites at higher altitude) 

satellites could not be removed.   

4.2 Trade-offs 

The results from each of the test cases demonstrated similar trends for the number 

of planes and satellites per plane as PDOP decreased.  The inclination remained within a 

set range for most of the altitudes.  The following graphs are separated into LEO trends 

and MEO and GEO trends.  The MEO and GEO results were combined since they were 

relatively similar.   
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Figure 4-13 illustrates PDOP as the number of planes increases for the LEO 

altitudes.  As expected, the PDOP values decrease as the number of planes increases.  For 

the same number of planes, there are multiple points that show a decrease in PDOP.  This 

is a result of some of the solutions possessing more satellites per plane.  For a PDOP of 

about two, the number of planes decreases as the altitude increases.    

 
Figure 4-13: PDOP vs. Number of Planes for LEO 
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 In Figure 4-14 the PDOP decreases as the number of satellites per plane increases 

for the LEO alitudes.  This is the same trend seen with the number of planes.  This makes 

sense due to the effect the total number of satellites had on PDOP (Section 4.1.4).  For 

the same number of satellites per plane, there are points that show a decrease in PDOP.  

This is attributed to the points possessing more orbital planes.  Some of the solutions 

possess the same number of planes and satellites per plane, but still demonstrate a change 

in PDOP.  This is analyzed later with the effects of inclination.     

 
Figure 4-14: PDOP vs. Satellites per Plane for LEO 
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 Figure 4-15 demonstrates the relationship between the number of satellites per 

plane and the number of planes.  The difference between the number of planes and the 

number of satellites per plane is never greater than three.  For the upper LEO altitude, the 

trend between satellites per plane and planes begins with a staircase effect.  As the 

number of planes increases for each altitude, the number of satellites per plane either 

remains the same or increases as well.     

 
Figure 4-15: Satellites per Plane vs. Number of Planes for LEO 
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in LEO, illustrates a roughly linear trend between the number of satellite per plane and 

the number of planes.  Equation 22 represents the trend.  

𝑠𝑝𝑝 = 0.9757 ∗ 𝑝𝑙𝑎𝑛𝑒𝑠 + 0.5951                               (22) 
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 The inclination results did not demonstrate the same trend as seen with the 

previous two parameters.  The inclination did not decrease or increase with PDOP for the 

lower LEO altitudes, but for the upper LEO altitude, the inclination showed an increase 

with an increase in PDOP.  This is the only case where inclination showed this specific 

trend.  For all the LEO altitudes, the inclination remained within a 10 degree range.  For 

725 km, the inclination was within 54 and 58 degrees.  The results at 1150 km were 

within 48 and 58 degrees, and lastly, for 1575 km, the inclination remained between 36 

and 46 degrees.  For a PDOP of about two, the inclination is roughly equal for the lower 

LEO altitudes, but the upper LEO altitude had the lowest inclination.  

 
Figure 4-16: PDOP vs. Inclination for LEO 
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 Since each LEO altitude possessed some solutions with the same number of 

planes and satellites per plane with a change in PDOP, the inclination was analyzed for 

these cases.  Inclination is the only other design parameter than could affect PDOP if the 

number of planes and satellites per plane were constant.  Figure 4-17 illustrates the 

solutions from the LEO altitudes with equal number of planes and satellites per plane, but 

resulted in different PDOP values.  For each of the solutions, the inclination is slightly 

greater for the solution with a lower PDOP value.    

 
Figure 4-17: PDOP vs. Inclination for Similar LEO Designs 
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 The same design parameters were analyzed for MEO and GEO.  The number of 

planes demonstrated a consistent trend when compared to PDOP.  This is shown in 

Figure 4-18.  There was more of a variety in the number of planes for the MEO and GEO 

results, which illustrated a smoother curve as PDOP decreased.  These results also 

demonstrate points with the same number of planes and a change in PDOP.  This is 

consistent with the LEO results, and it is a result of a different number of satellites per 

plane for those solutions.    

 
Figure 4-18: PDOP vs. Number of Planes for MEO & GEO 

  

3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

Number of Planes

P
D

O
P

PDOP vs. Number of Planes for MEO & GEO

 

 
2000km
10447km
18893km
27340km
35786km



4-101 

 

 Figure 4-19 illustrates the number of satellites per plane as PDOP decreases for 

MEO and GEO.  There is less of a variety in the number satellites per plane for these 

altitudes than were seen for the LEO results.  Therefore, the trend is not as smooth.  The 

solutions with the same number satellites but a change in PDOP could have a different 

number of planes.  For a PDOP of about one, the number of satellites decreases as the 

altitude increases, and for 10447 km and 18893 km, the number is equal.    

 
Figure 4-19: PDOP vs. Satellites per Plane for MEO & GEO 
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 Figure 4-20 shows the relationship between the number of satellites per plane and 

the number of planes for the MEO and GEO test cases.  For each altitude, as the number 

of planes increases, the number of satellites per plane either remains constant or 

increases.  The largest difference between these variables is six, but this only occurred 

once.  For the majority of points on this graph, the difference between the variables is less 

than six.   The first and second MEO altitudes do not illustrate as much of an increase in 

satellites per plane as the number of planes increase.  This could be attributed to the 

lower altitudes requiring more satellites in each plane to produce PDOP values less than 

six.  With the other altitudes an increase in satellite per plane is more evident.  The 

variety in satellites per plane for the upper altitudes could be a result of the higher 

altitudes providing better coverage with each orbital plane.  Therefore, the number of 

satellites per plane does not remain at the upper bound values.  

 
Figure 4-20: Satellites per Plane vs. Number of Planes for MEO & GEO 
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 The second MEO test case, the dominating MEO test case, and the GEO test case 

illustrate a roughly linear trend between the number of satellites per plane and the number 

of planes.  Equations 23 and 24 represent the respective trends between these parameters. 

𝑠𝑝𝑝 = 0.2471 ∗ 𝑝𝑙𝑎𝑛𝑒𝑠 + 7.3817                                   (23)  

Where R2=0.83. 

𝑠𝑝𝑝 = 0.7623 ∗ 𝑝𝑙𝑎𝑛𝑒𝑠 + 1.827                                 (24) 

Where R2=0.79. 

  In Figure 4-21 the inclination for MEO and GEO is compared to the PDOP 

values.  There is no clear increase or decrease in PDOP as inclination changes.  This is 

consistent with the results from the LEO altitudes.  The first three altitudes demonstrate a 

10 degree range of inclination, which matches the results from LEO.  The upper MEO 

altitude and GEO did not illustrate the same range in inclination.  Both altitudes were 

more sporadic, but stayed within a 20 degree range.  Ignoring the upper MEO and GEO 

results, the two lower MEO altitudes were at a higher inclination range than the 18893 

km results.  A similar trend was seen with the LEO results.  This makes sense that more 

inclination is needed at lower altitudes to produce PDOP values less than six.   
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Figure 4-21: PDOP vs. Inclination for MEO & GEO 
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 To analyze the effects on PDOP for solutions with the same number of planes and 

satellites per plane, Figure 4-22 shows the solutions from MEO and GEO with equal 

planes and satellites per plane.  The upper MEO altitude and GEO altitude did not have 

any solutions with equal planes and satellites per plane.  The results shown are from the 

first three MEO altitudes.  For each set of solutions, the inclination is slightly higher for a 

lower PDOP value.  This is consistent with the LEO results.  Although inclination did not 

demonstrate a clear increase or decrease as PDOP changed for the overall solutions, the 

similar solutions illustrated that with a higher inclination it is possible to decrease PDOP.    

 
Figure 4-22: PDOP vs. Inclination for Similar MEO Designs 
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4.4 Analysis 

The same designs used in Section 4.1.4 were compared to the values of the 

current GPS constellation.  From each altitude range, the design from the concave portion 

of the respective Pareto fronts was used to analyze how PDOP changed with latitude.  

Figure 4-23 illustrates the PDOP values as latitude changes for both GPS and the best 

design in LEO.  The GPS constellation possesses lower values for PDOP, and there are 

no major outliers.  The LEO design possesses values for PDOP greater than six when 

latitude is less than -51 degrees or greater than 55 degrees.  The LEO design shows 

increases in PDOP for latitudes less than -30 degrees or greater than 30 degrees.    The 

GPS constellation shows the opposite trend for those latitudes as it decreases for latitudes 

less than -30 degrees or greater than 30 degrees.  Since the GPS constellation is at a 

higher altitude, it is able to provide better geometry across the globe especially for higher 

latitudes.       

 
Figure 4-23: LEO and GPS Comparison  
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In Figure 4-24 the values of PDOP for the best MEO design are compared to the 

GPS as latitude changes.  The MEO design produced lower values of PDOP for all 

latitudes.  The MEO design was approximately 10,000 km lower than the GPS and 

possessed 21 more satellites.  Both constellations show peaks from latitude of -55 degrees 

to -14 degrees and from 14 degrees to 55 degrees.  This could be a result of both 

constellations having similar inclinations (around 55 degrees).  The MEO design shows 

more of a decrease in PDOP around latitude of 0 degrees.  The values decrease around 

zero degrees latitude because both constellations are inclined, so it is more difficult to 

have multiple satellites in view over the equator.  For the validation case discussed in 

Section 3.5, the MOGA generated the current GPS constellation and not the constellation 

shown here.  This is a result of a smaller range between the lower and upper bounds of 

the design parameters used for the GPS case.     

 
Figure 4-24: MEO and GPS Comparison  
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The GEO design produced lower PDOP values than GPS for all latitudes.  Figure 

4-25 illustrates the comparison of the two constellations.  Both constellations show a drop 

in PDOP around latitude 48 degrees.  For the GEO constellation, excluding latitudes less 

than -60 degrees or greater than 60 degrees, the highest values for PDOP occur around -7 

to 5 degrees.  However, for the GPS the PDOP values from latitude -7 to 5 degrees are 

lower than the others, excluding the same ranges as before.  Both constellations maintain 

PDOP values less than six for all latitudes.   

  
Figure 4-25: GEO and GPS Comparison 
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relationship between number of planes and satellites per plane.  The altitude and transmit 

power were kept relatively constant, so the design space mostly consisted of the number 

of planes, satellites per plane, RAAN increment, and inclination.  The number of planes 

and satellites per plane illustrated an obvious relationship between PDOP and cost.  

However, the inclination and RAAN increments were more random and did not illustrate 

an obvious relationship.  As a result, it would be difficult to manually determine points 

on the Pareto front when varying these parameters.  The MOGA would provide more of 

an advantage if the other design variables were analyzed with respect to this problem 

because the design space would increase.     
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For each altitude range, a design parameter sweep was completed for number of 

planes and satellites per plane.  A point was selected on the Pareto front, and one of the 

parameters was held constant as the other one was varied.  Figure 4-26 illustrates the 

parameter sweep for the number of planes using the LEO 3 test case.  As the number of 

planes is varied, the points remain relatively close to the points on the Pareto front.  The 

points generated from the parameters sweep did not result in a better PDOP for a lower 

cost.     

 
Figure 4-26: Parameter Sweep for LEO 3 Number of Planes 
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Figure 4-27 illustrates a parameter sweep of the satellites per plane in the LEO 3 

test case.  The points generated from the parameter sweep remain close to the points on 

the Pareto front.  Both Figure 4-26 and Figure 4-27 show a strong relationship between 

the number of planes and satellites per plane.  By varying these parameters, additional 

points were determined, but this is a result of using a small generation number for the 

simulations.  If a larger generation number was used, it is possible the MOGA would 

determine these points as well.   

 
Figure 4-27: Parameter Sweep for LEO 3 Satellites per Plane 
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 Figure 4-28 illustrates the sweep for the number of planes in the MEO 2 test case.  

These results are similar to those seen for the LEO altitude.  Most of the points generated 

from the parameter sweep fell in between points on the Pareto front.   

 
Figure 4-28: Parameter Sweep for MEO 2 Number of Planes 
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 In Figure 4-29 the number of satellites per plane was varied for the MEO 2 test 

case.  The parameter sweep produced a smooth curve just as seen with the previous 

results.  The relationship between PDOP and cost remains the same as the number of 

satellites per plane decrease.   

 
Figure 4-29: Parameter Sweep for MEO 2 Satellites per Plane 
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 Figure 4-30 shows the sweep for the number of planes in the GEO test case.  The 

parameter sweep generated points in between the points on the Pareto front.  This is also 

a result of the low generation number used for the simulations.  The point with six planes 

was almost exactly equal to one of the points on the Pareto front.    

 
Figure 4-30: Parameter Sweep for GEO Number of Planes 
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 Figure 4-31 illustrates the satellite per plane sweep for the GEO test case.  These 

results are similar to those seen for the other two altitude ranges.  All these parameters 

sweeps show that it is possible to determine points close to the Pareto front generated by 

the MOGA.  None of the points generated from the parameter sweeps produced better 

PDOP values for a lower cost.        

 
Figure 4-31: Parameter Sweep for GEO Satellites per Plane 
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4.5 Limitations 

The results of this thesis demonstrate the use of MATLAB’s MOGA and STK to 

produce and analyze navigation constellation designs.  There are several limitations to the 

results of this research.  There were eleven design parameters used in this analysis, but 

the eccentricity, argument of perigee, RAAN, and mean anomaly were set to zero.  

Therefore, the effects of these parameters on a navigation system at different altitudes 

were not determined.  The difference in navigation performance of circular orbits versus 

elliptical orbits was not considered.  The median of the maximum PDOP values was used 

to determine the central tendency of PDOP values across the latitudes.  Therefore, there 

was no distribution in the PDOP values that were input to the MOGA.  Another threshold 

could be easily implemented, but extensive sweeps were outside the scope of this work.  

The variation in PDOP over latitude was shown for several constellation designs, but the 

specific trend in PDOP was not analyzed for all altitudes included in this thesis.   

Transmit power was calculated specifically for each altitude to ensure the proper 

size satellite and link closure.  Therefore, the MOGA did not have the option of selecting 

cheaper satellites for orbits at a higher altitude.  The spacecraft cost increased as the 

altitude increased to account for the transmit power required.  This limited the spacecraft 

design options for constellations at higher altitudes.  Walker constellations were used in 

this thesis, so all the satellites in a constellation were the same size.  As a result, the 

performance and cost for constellations with mixed size satellites were not determined.   
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4.6Summary 

This chapter presented possible navigation constellation designs at different 

orbital altitudes.  As expected, the PDOP values improved for designs at higher altitudes, 

and the number of satellites required decreased as altitude increased.  The cost of the 

designs varied with altitude, but overall, the LEO designs illustrated less expensive 

options.  Several of the designs were compared to the GPS constellation, and both the 

MEO and GEO designs maintained PDOP values lower than the GPS.  The conclusions 

from these results are presented in the next chapter.   
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Chapter 5   
Conclusions 

 The main contribution of this thesis was the multi-objective genetic algorithm 

model that ran in MATLAB in conjunction with STK and generated sets of navigation 

constellation designs.  Through the generated sets of constellation designs, the tradeoffs 

between PDOP and system cost were illustrated.  The results showed that the model used 

in this thesis was capable of creating realistic design solutions.  The hybrid constellation 

results illustrated the ability for the design tool to handle multiple satellite types and 

multiple orbital altitudes.    

5.1 Contributions 

The design tool used in this thesis was developed, tested, and analyzed.  This 

thesis accomplished the goal of creating a multi-objective design tool that could produce 

navigation constellation designs.  The MOGA was able to search and check designs that a 

human might not try.  The tradeoffs in the designs were analyzed, and the PDOP of 

several designs was evaluated over latitude.  Several hybrid constellations were generated 

and compared to the individual altitude designs.      

The navigation constellation designs generated in LEO possessed slightly higher 

PDOP values than MEO and GEO, but the constellations were less expensive.  The 

results highlighted the interesting fact that even though the constellations in LEO 

required more satellites than MEO and GEO to produce PDOP values less than six, the 

cost was still less for those designs.  The designs in LEO showed more changes in PDOP 

as altitude increased, but the cost was relatively similar. The designs in MEO illustrated 

the opposite effects.     
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PDOP values were analyzed over latitude for designs at MEO and GEO.  They 

were then compared with PDOP over latitude for the current GPS constellation.  Both 

MEO and GEO designs produced lower values for PDOP across the given latitudes.  The 

MEO design also illustrated an increase in PDOP for the same latitudes as the GPS 

constellation.  

 The hybrid constellation results showed that by combining constellations, it is 

possible to achieve lower PDOP values.  For the LEO-MEO hybrid constellation, there 

was little extra cost for the hybrid design, but for the MEO-GEO, there was a large cost 

increase compared to the MEO constellation.  Most of the hybrid design solutions 

produced PDOP values less than one, which was much lower than many of the design 

solutions from the individual altitudes.  

5.2 Challenges 

 One of the most challenging aspects of this research was the limitation in 

computation time.  When developing the design tool used in this thesis, it was difficult to 

determine the origins of an error because of the model complexity.  The algorithm would 

run for several hours before notifying the user of an error.  When a change was made to 

the model, the user had to wait a couple days to see the effects.  Due to the size of this 

model, the software programs, STK and MATLAB, would crash during several 

simulations.  Possessing multiple computers to run simulations would add redundancy 

and prevent having to completely restart simulations if the programs crash.      

 Another challenge was attempting to complete STK tasks within MATLAB code.  

To execute STK tasks within MATLAB, multiple references were needed.  The example 
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commands available in STK did not always provide the level of detail required to develop 

a functioning command.  Determining the cause of an error was also challenging due to 

the lack of detail in the error message.   

 Using a multi-objective genetic algorithm illustrated the tradeoffs between the 

two objective functions used in this thesis, but it was difficult to develop the problem 

without the ability to use a constraint function.  The constraint function could have been 

applied to the launch vehicle analysis.  It could have also been used to force certain 

design variables to be integer values.  Understanding the MATLAB code for the mutation 

and crossover functions is not trivial, and attempting to use those functions to constrain 

certain variables was difficult.  The limitation in computation time made it difficult to 

ensure the updates to the mutation and crossover functions were working correctly.  This 

challenge is the reason for creating test cases based on altitude and transmit power.  

5.3 Recommendations for Future Work 

This thesis demonstrated the ability to use MATLAB’s MOGA along with STK to 

generate navigation constellation designs.  This design tool could be adapted for other 

uses by changing the design vector and/or objective functions to meet the user’s 

requirements.  The design tool used in this thesis was able to exploit high levels of 

fidelity from STK.  STK’s extensive library of evaluations could easily be changed for 

many complicated objectives.  The design tool used in this thesis could be expanded and 

further explored. 

This thesis included launch vehicle cost, but it did not explore the effects of 

bundling the spacecraft together on launch vehicles in various configurations.  The 
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launch vehicle cost used in this thesis was determined by assuming direct launches into 

the design orbits.  An analysis of inserting a spacecraft directly into an orbit compared to 

utilizing a transfer orbit could give details on a more optimal method for creating the 

constellations generated from the design tool.     

This thesis focused on the navigation metric, PDOP, but there are other metrics 

for navigation that could be examined.  PDOP is a geometric measure, but STK also 

offers the ability to analyze actual position error from the measurements.  This could 

illustrate the level of accuracy available on the ground when using new constellation 

designs based on clock and orbit uncertainty.  It could also illustrate areas across the 

globe where accuracy will be lower and require additional assets to achieve reasonable 

positioning.     

This thesis focused on the global value for PDOP, but it did not focus specifically 

on certain target areas.  Future research could narrow the analysis to a few targets to 

analyze the change in accuracy over time or how certain regions compared to one another 

in terms of PDOP values.  The values for PDOP at the specified targets could be analyzed 

with different constellation designs to determine if one design offers better PDOP values 

at latitudes where it is difficult to achieve accurate positioning.  

This thesis exclusively utilized MATLAB’s MOGA to optimize PDOP and cost.  

Future work may involve exploring different optimization algorithms.  Different 

optimizers were discussed briefly in Section 2.4.  Further improvements could be made 

with the MOGA as well.  Using a higher population size or generation number would 

generate more accurate results.  Improving the computation time for the simulations 

would allow for more research into the MOGA itself. 
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The hybrid constellation designs in this thesis were composed of two different 

constellations.  Additional research could be done in analyzing these designs.  Due to the 

computational limitation, a sufficient amount of research was unable to be accomplished 

with the hybrid constellations.  Future work could examine the appropriate bounds to use 

for the design parameters and attempt to improve the resolution of the Pareto fronts for 

those constellations.     

Although there is additional research that could be accomplished to improve the 

design tool developed in this research, this thesis provided additional information on 

using MATLAB’s MOGA along with STK to generate navigation constellation designs.  

This research illustrated the advantages and disadvantages of using this method, which 

overall provided further insight into using this constellation design tool specifically for 

the use of navigation.  
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Appendix A  

Link Margin Calculation 

This appendix will illustrate the calculation of transmit power using the link 

margin analysis.  

Using the altitudes defined in this thesis, the range was found using SME-SMAD 

Table I-1 for 5 degrees elevation.  Table A-1 illustrates the altitudes used in this thesis 

and their respective range values.  

Altitude, 
km 

Range, 
km 

300 1500 
725 2563 

1150 3481 
1575 4102 
2000 4905 

10447 14540 
18893 19856 
20184 25235 
27340 35263 
35786 41127 

Table A-1: Altitude and Range 

Once the range is determined, the free-space loss is calculated, where r is the 

range and f is the carrier frequency: 

𝐿𝑠 = 92.45 + 20𝑙𝑜𝑔10(𝑟) + 20𝑙𝑜𝑔10(𝑓) 

The L1 signal frequency from the current GPS is used [34]: 

𝑓 = 1.58 𝐺𝐻𝑧 

Specific gain and power specifications from GPS were used for these calculations.  

Table A-2 illustrates those values.  
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  Satellite at 5° 
Elevation 

Satellite at 
40° Elevation 

Satellite at 90° 
Elevation 

Power at Satellite Antenna Input, dBW 14.3 14.3 14.3 
Range(km) 25240 22020 21190 
Satellite Antenna Gain, dB  12.1 12.9 10.2 
Effective Isotropic Radiated Power, dBW 26.4 27.2 24.5 
Path Loss, dB -159 -157.8 -157.1 
Atmospheric Loss, dB 0.5 0.5 0.5 
Received Power Density, dBW/m^2 -133.1 -131.1 -133.1 
Effective Area of an Omnidirectional 
Antenna, dBm2

 
25.4 25.4 25.4 

Receive Power Available from an Isotropic 
Antenna, dBW -158.5 -156.5 -158.5 

Gain of a Typical Patch Receive Antenna, 
dBic -4 2 4 

C/A Code Received Power Available to a 
Typical Receive Antenna, dBW -162.5 -154.5 -154.5 

Table A-2: Gain and Power Specifications for GPS [34] 

The C/A code of GPS was also used in these calculations, and the receive signal power is 

[34]: 

𝐶 = −160 𝑑𝐵𝑊 

With all of these values, the transmit power in decibels (dB) is calculated: 

𝑃𝑇𝑥 = 𝐶 − 𝐺𝑇𝑥 + 𝐿𝑇𝑥 − 𝐺𝑅𝑥 + 𝐿𝑠 + 𝐿𝑎𝑡𝑚 + 𝐿𝑅𝑥 

Where, 

C = total power at the receiver 

𝐺𝑇𝑥= gain of the transmitter 

𝐿𝑇𝑥=line loss at the transmitter 

𝐺𝑅𝑥=gain of the receiver 

𝐿𝑠= free space loss 

𝐿𝑎𝑡𝑚=atmospheric loss 

𝐿𝑅𝑥= line loss at the receiver 

The transmit power is converted from dBW to watts: 
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𝑃𝑇𝑥=10
𝑃𝑇𝑥𝑑𝐵
10  

Altitude,km P Tx, Watts 
725 0.50 

1150 0.92 
1575 1.28 
2000 1.83 
10447 16.12 
18893 30.06 
20184 48.56 
27340 94.83 
35786 128.99 

Table A-3: Altitude and Transmit Power 
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Appendix B  

Development of Payload Mass Equation 

 This appendix will demonstrate the development of the payload mass equation 

used in the cost model from this thesis.  As mentioned in Chapter 3, the GPS, 

GLONASS, Galileo, and Beidou constellations were used to create a second order 

equation relating transmit power and payload mass.  The GPS transmit power was used 

from [37].  The spacecraft mass for GPS Block IIF is 1705 kg [38].  The payload mass 

for GPS was estimated using ratios created from GLONASS.  GLONASS –M spacecraft 

mass is 1230 kg and its payload mass is 250 kg.  The ratio of spacecraft mass to payload 

mass for GLONASS is 4.92.  Therefore GPS payload mass was estimated: 

𝑚𝑎𝑠𝑠𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 1705 𝑘𝑔
4.92

= 347 kg 

 Assuming GLONASS possessed the same gain and power requirements as GPS, 

the transmit power was estimated for GLONASS using the process from Appendix A.  

The mass for Beidou is from [39], and the transmit power was estimated using the same 

method used for GLONASS.  Table B-1 illustrates the altitudes for GLONASS and 

Beidou along with the respective transmit power estimates. 

  Altitude, km 
Transmit 
Power, W 

GLONASS 19000 [40] 40 
Beidou 21000 [41] 52 

Table B-1: Altitude and Transmit Power 

The payload mass for Galileo is from [42], and the transmit power for Galileo was taken 

from [43].  Table B-2 illustrates the values for transmit power and payload mass for the 

four navigation constellations.  
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 Transmit Power, W Payload Mass, kg 
Beidou 52 400  
GPS 50 347 
Glonass 40 250 
Galileo 25 112 

Table B-2: Transmit Power and Payload Mass for Navigation Constellations 

Figure B-1 illustrates the polynomial trend line created using the values from Table B-1.   

 

Figure B-1: Payload Mass Equation 
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Appendix C  

Data from Individual Test Cases 

 
Figure C-1: LEO Test Case 1 

Cost, 
$B PDOP # 

Planes 

Sats 
per 

plane 

Truan, 
deg 

RAAN 
Inc, 
deg 

Alt, 
km 

Incl, 
deg 

PTX, 
W 

0.995 1.75 15 13 1.62 79.72 817 58.49 0.57 

0.877 2.16 14 12 2.43 77.53 807 58.32 0.56 

0.767 2.24 11 14 8.51 63.73 765 53.97 0.51 

0.728 2.69 11 13 6.91 66.54 767 56.04 0.52 

0.727 2.79 11 13 7.62 65.80 771 54.55 0.51 

0.626 3.39 10 12 7.23 65.75 763 55.89 0.51 

0.625 4.04 10 12 7.61 65.82 770 54.58 0.51 

0.589 5.09 10 11 6.88 66.31 761 56.41 0.52 

0.589 6.20 10 11 7.08 65.99 762 56.11 0.51 

0.554 7.92 10 10 3.86 70.67 758 60.90 0.52 

0.553 9.75 10 10 6.47 66.99 759 57.04 0.52 

Table C-1: LEO Test Case 1 Results 
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Figure C-2: LEO Test Case 2 

 

Cost, 
$B PDOP # 

Planes 

Sats 
per 

plane 

Truan, 
deg 

RAAN 
Inc, 
deg 

Alt, 
km 

Incl, 
deg 

PTX, 
W 

1.21 1.17 15 15 110.64 139.02 1187 56.48 0.99 

1.21 1.17 15 15 110.64 139.02 1187 56.48 0.99 

1.13 1.24 14 15 152.27 92.80 1215 47.56 1.02 

0.971 1.25 12 15 4.60 149.92 1236 49.77 1.04 

0.899 1.37 13 13 103.52 109.33 1202 54.10 0.99 

0.719 1.64 11 12 106.57 82.00 1203 53.38 0.99 

0.656 1.82 10 12 66.46 102.63 1223 57.32 1.01 

0.556 2.02 9 11 75.63 95.62 1221 58.43 1.00 

0.520 2.46 9 10 85.76 87.99 1217 54.96 0.99 

0.485 3.31 9 9 93.91 68.64 1229 52.48 0.99 

0.485 3.78 9 9 97.87 80.03 1210 50.18 0.99 

Table C-2: LEO Test Case 2 Results 
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15planes/15satsperplane
9planes/9satsperplane
14planes/15satsperplane
9planes/9satsperplane
9planes/11satsperplane
15planes/15satsperplane
9planes/10satsperplane
11planes/12satsperplane
12planes/15satsperplane
13planes/13satsperplane
10planes/12satsperplane
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Figure C-3: LEO Test Case 3 

Cost, 
$B PDOP # 

Planes 

Sats 
per 

plane 

Truan, 
deg 

RAAN 
Inc, 
deg 

Alt, 
km 

Incl, 
deg 

PTX, 
W 

1.27 0.90 15 15 129.33 129.82 1615 38.57 1.53 

0.837 1.17 12 12 79.02 131.98 1646 39.99 1.64 

0.685 1.25 10 12 119.51 148.72 1668 36.34 1.45 

0.608 1.51 10 10 81.05 133.37 1635 40.90 1.53 

0.549 1.55 9 10 37.98 109.62 1623 40.10 1.56 

0.512 1.92 9 9 56.44 127.55 1617 42.91 1.57 

0.456 2.14 8 9 49.71 129.91 1614 42.76 1.59 

0.422 2.77 8 8 60.86 127.00 1613 43.69 1.58 

0.422 3.31 8 8 61.64 124.99 1615 43.58 1.57 

0.421 4.12 8 8 63.62 120.35 1619 43.44 1.55 

0.421 4.78 8 8 64.90 117.25 1621 43.35 1.53 

Table C-3: LEO Test Case 3 Results 
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15planes/15satsperplane
8planes/8satsperplane
8planes/8satsperplane
9planes/10satsperplane
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8planes/8satsperplane
10planes/10satsperplane
12planes/12satsperplane
8planes/9satsperplane
9planes/9satsperplane
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‘  
Figure C-4: MEO Test Case 1 

Cost, 
$B PDOP # 

Planes 

Sats 
per 

plane 

Truan, 
deg 

RAAN 
Inc, 
deg 

Alt, 
km 

Incl, 
deg 

PTX, 
W 

6.82 1.23 11 11 7.14 65.32 2078 56.56 2.39 

6.82 1.24 11 11 7.25 65.36 2080 56.36 2.38 

6.81 1.27 11 11 6.84 67.43 2068 55.85 2.34 

6.75 1.32 10 11 6.34 64.94 2053 62.46 2.19 

6.19 1.32 10 11 5.81 65.47 2056 62.73 2.38 

5.58 1.42 9 11 7.08 65.81 2059 61.70 2.34 

4.96 1.60 8 11 6.54 65.73 2051 62.27 2.35 

4.34 1.78 7 11 5.94 65.60 2057 58.40 2.45 

4.04 2.37 6 10 7.90 67.52 2057 61.57 2.46 

4.04 2.59 6 10 3.97 61.78 2057 56.04 2.40 

Table C-4: MEO Test Case 1 Results 
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Figure C-5: MEO Test Case 2 

Cost, 
$B PDOP # 

Planes 

Sats 
per 

plane 

Truan, 
deg 

RAAN 
Inc, 
deg 

Alt, 
km 

Incl, 
deg 

PTX, 
W 

3.72 0.78 10 10 8.78 76.25 10479 55.95 16.38 

3.72 0.78 10 10 8.78 76.25 10479 55.95 16.38 

3.35 0.83 9 10 8.94 75.11 10481 56.87 16.37 

2.78 0.94 8 9 8.76 74.35 10482 59.04 16.38 

2.44 1.02 7 9 8.30 73.51 10480 57.03 16.37 

1.94 1.20 6 8 8.75 73.44 10483 60.52 16.38 

1.74 1.20 5 9 9.42 71.65 10487 59.63 16.32 

1.31 1.53 4 8 7.49 70.80 10480 57.68 16.37 

1.07 1.77 3 9 8.70 70.94 10489 60.14 16.37 

0.991 2.10 3 8 9.19 71.34 10489 66.61 16.37 

0.991 2.39 3 8 8.74 71.20 10487 64.29 16.37 

Table C-5: MEO Test Case 2 Results 

0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Cost (FY2010 thousands of dollars)

P
D

O
P

MEO Test Case 2

 

 
10planes/10satsperplane
10planes/10satsperplane
9planes/10satsperplane
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6planes/8satsperplane
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4planes/8satsperplane
3planes/9satsperplane
3planes/8satsperplane
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Figure C-6: MEO Test Case 3 

 

Cost, 
$B PDOP # 

Planes 

Sats 
per 

plane 

Truan, 
deg 

RAAN 
Inc, 
deg 

Alt, 
km 

Incl, 
deg 

PTX, 
W 

11.46 0.64 11 11 58.15 96.22 18967 48.08 30.31 

11.46 0.64 11 11 58.15 96.22 18967 48.08 30.31 

11.45 0.64 11 11 59.04 84.36 18963 47.48 30.30 

10.38 0.67 10 11 32.97 73.71 18959 45.29 30.24 

9.59 0.71 10 10 53.08 87.09 18964 47.16 30.29 

8.61 0.74 9 10 31.13 72.03 18958 45.09 30.23 

7.01 0.84 8 9 43.51 63.80 18956 44.98 30.23 

5.90 0.89 8 8 59.92 52.53 18954 44.79 30.24 

3.97 1.14 6 7 53.24 56.38 18953 44.82 30.24 

3.47 1.28 6 6 74.31 43.21 18952 44.67 30.24 

2.51 1.55 5 5 70.03 45.78 18951 44.69 30.24 

2.03 1.97 4 5 68.91 45.03 18949 44.53 30.24 

1.93 3.23 4 4 78.84 40.02 18950 44.61 30.25 

1.77 5.66 4 4 77.18 113.48 18923 40.63 30.88 

Table C-6: MEO Test Case 3 Results 
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Figure C-7: MEO Test Case 4 

 

Cost, 
$B PDOP # 

Planes 

Sats 
per 

plane 

Truan, 
deg 

RAAN 
Inc, 
deg 

Alt, 
km 

Incl, 
deg 

PTX, 
W 

38.77 0.76 9 9 16.05 49.66 27367 45.69 95.22 

30.86 0.87 8 8 44.45 53.46 27375 61.85 95.14 

20.70 1.12 7 6 33.69 57.87 27377 62.07 95.21 

12.45 1.58 4 6 3.56 51.60 27431 64.30 95.10 

9.74 2.04 3 6 70.68 81.02 27361 47.90 95.24 

5.70 12.74 3 3 42.70 56.26 27373 62.49 95.11 

Table C-7: MEO Test Case 4 Results 
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Figure C-8: GEO Test Case 

 

Cost, 
$B PDOP # 

Planes 

Sats 
per 

plane 

Truan, 
deg 

RAAN 
Inc, 
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Appendix D  

MATLAB Code 

D.1: navigation_gamultiobj.m  

% Navigation System Optimization Routine using the matlab multi-
objective genetic algorithm routine 
  
%GAMULTIOBJ setup 
tic 
% 
%***************************USER 
INPUTS************************************ 
% How many parameters per system type? 
nvars=11; 
sattypes=1; %Number of satellite types 
generations=30; 
populationsize=30; 
  
% Lower and Upper Bounds on System Type Parameters 
% Type: Unmanned Spacecraft (large) 
vec(1).num=[9 9 0 0;15 15 180 180]; % num planes, sats/plane, true an 
phasing; RAAN increment 
vec(1).location=[1150 0 40 0 0 0; 1250 0 80 0 0 0]; % alt e i om w M 
vec(1).design=[0.97;1.07]; % TX power, Watts--this variable also 
determines s/c size; higher power means larger s/c 
% Small Spacecraft (small) 
% vec(2).num=[1 1 0 0;10 10 360 360]; % num planes, sats/plane, true an 
phasing; RAAN increment 
% vec(2).location=[2000 0 50 0 0 0;15000 0 70 0 0 0]; % alt e i om w M 
% vec(2).design=[25;50]; 
% 
%The available types are Pegasus,Minotaur,Falcon9,AtlasV,DeltaIVH based 
on 
%SMAD and the operational vehicles owned by the USA--all 
%data taken from SME SMAD 2011 Page 308 Table 11-23 
lv.mass.bound=[443,1650,10450,20050,22560;0,0,4540,8200,13130];%Capacit
y for LEO & GEO 
lv.mass.alt=[2000;inf];%Altitude set as LEO or GEO 
lv.cost.average=[18454,22000,56750,172000,215000];%Average cost from 
SMAD 
lv.cost.efficiency=[41.5,13.3,5.4,8.6,9.5;0,0,12.5,25.3,16.4];%Cost 
efficiency for LEO & GEO 
% 
%***********************END USER 
INPUTS************************************ 
  
%Function1 is cost function 
function1= @(x) cost(x,lv); 
%Function2 is performance measured as PDOP 
function2=@(x) PDOP(x); 
%Combine functions to create one Fitness Function 
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FitnessFunction= @(x) [function1(x) function2(x)]; 
  
for n=1:sattypes 
    LB(nvars*n-nvars+1:nvars*n) = [vec(n).num(1,:) vec(n).location(1,:) 
vec(n).design(1,:)]; 
    UB(nvars*n-nvars+1:nvars*n) = [vec(n).num(2,:) vec(n).location(2,:) 
vec(n).design(2,:)]; 
%     LB=cat(2,LB,lv_lb); 
%     UB=cat(2,UB,lv_ub); 
end 
  
options=gaoptimset('PopInitRange',[LB;UB]); 
%Set specific options for the multi-objective GA 
options = 
gaoptimset(options,'OutputFcns',{@gaoutputfcn},'PlotFcns',{@gaplotparet
o,@gaplotscorediversity},'PopulationSize',populationsize,'Generations',
generations,'CreationFcn',@int_pop,'MutationFcn',@int_mutation,'Crossov
erFcn',@int_crossover); 
  
%GAMULTIOBJ solver routine 
try 
    
[x,fval,exitflag,output]=gamultiobj(FitnessFunction,nvars*sattypes,[],[
],[],[],LB,UB,options) 
    modifier='success'; 
    save(date,'x','fval','output','exitflag','vec') 
    figurename=strcat(date,'ResultsFig'); 
    saveas(gcf,figurename,'fig'); 
catch me 
    modifier='failed'; 
    report=getReport(me); 
    save('Report.mat','report') 
end 
  
toc 

D.2: cost.m 

function TotCost=cost(x,lv) 
  
%Navigation objective function 
%x is defined as a point solution to test the function prior to 
optimizing 
%*********User Input********* 
nvars=11; 
%**End User Input** 
sattypes=numel(x)/nvars; 
% 
%Pre-allocate arrays 
xprod=zeros(1,sattypes); 
power=zeros(1,sattypes); 
alt=zeros(1,sattypes); 
xdev=zeros(1,sattypes); 
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payload_mass=zeros(1,sattypes); 
Spacecraftdrymass=zeros(1,sattypes); 
mass=zeros(1,sattypes); 
navpayloadcost_USCM=zeros(1,sattypes); 
navpayloadcost_USCM_TFU=zeros(1,sattypes); 
mass_row=zeros(1,sattypes); 
sats_per_plane=zeros(1,sattypes); 
num_planes=zeros(1,sattypes); 
total_plane_mass=zeros(1,sattypes); 
Pegasus=zeros(1,sattypes); 
Minotaur=zeros(1,sattypes); 
Falcon=zeros(1,sattypes); 
Atlas=zeros(1,sattypes); 
Delta=zeros(1,sattypes); 
% 
%%Calculate spacecraft mass and determine cost to deploy launch 
vehicles 
for n=1:sattypes % n refers to sat type 
    xprod(n)=x(n*nvars-nvars+1)*x(n*nvars-nvars+2);%xprod is the number 
of total satellites 
    power(n)=x(n*nvars-nvars+11); 
    alt(n)=x(n*nvars-nvars+5); 
    if xprod(n)>0 
        xdev(n)=1; 
    else xdev(n)=0; 
    end 
    %Create a polynomial trend using GPS,GLONASS,Beidou, and Galileo 
transmit power and related mass 
    payload_mass(n)=0.1164*power(n)^2+1.279*power(n)+8.3951; %Mass of 
navigation payload 
    Spacecraftdrymass(n)=(payload_mass(n)/0.32); %Page 422 Table 14-18 
    mass(n)=payload_mass(n)+Spacecraftdrymass(n); 
    navpayloadcost_USCM(n)=618*payload_mass(n);%Pg 298 Table 11-8;Comm 
Payload 
    navpayloadcost_USCM_TFU(n)=189*payload_mass(n);%Pg 299 Table 11-
9;Comm Payload 
   %Determine the cheapest launch vehicle and how many to use for the 
   %scenario 
    mass_row(n)=find(alt(n)<lv.mass.alt,1,'first'); 
    sats_per_plane(n)=x(n*nvars-nvars+2); 
    num_planes(n)=x(n*nvars-nvars+1); 
    total_plane_mass(n)=mass(n)*sats_per_plane(n); 
    if mass_row(n)==1 
        Pegasus(n)=ceil(total_plane_mass(n)/lv.mass.bound(1,1)); 
        Minotaur(n)=ceil(total_plane_mass(n)/lv.mass.bound(1,2)); 
        Falcon(n)=ceil(total_plane_mass(n)/lv.mass.bound(1,3)); 
        Atlas(n)=ceil(total_plane_mass(n)/lv.mass.bound(1,4)); 
        if Pegasus(n) > 1 
            if Minotaur(n) > 2 
                if Falcon > 3 
                    if Atlas > 1 
                        
Delta(n)=floor(lv.mass.bound(1,5)/total_plane_mass(n)); 
                        Pegasus(n)=0; 
                        Minotaur(n)=0; 
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                        Falcon(n)=0; 
                        Atlas(n)=0; 
                    elseif Atlas <=1 
                        Atlas(n)=floor(lv.mass.bound(1,4)); 
                        Pegasus(n)=0; 
                        Minotaur(n)=0; 
                        Falcon(n)=0; 
                        Delta(n)=0; 
                    end 
                elseif Falcon <=3 
                    
Falcon(n)=floor(lv.mass.bound(1,3)/total_plane_mass(n)); 
                    Pegasus(n)=0; 
                    Minotaur(n)=0; 
                    Falcon(n)=0; 
                    Delta(n)=0; 
                    Atlas(n)=0; 
                end 
            elseif Minotaur(n) <= 2 
                
Minotaur(n)=ceil(total_plane_mass(n)/lv.mass.bound(1,2)); 
                Pegasus(n)=0; 
                Falcon(n)=0; 
                Delta(n)=0; 
                Atlas(n)=0; 
            end 
        elseif Pegasus(n) <= 1 
            Pegasus(n)=floor(lv.mass.bound(1,1)/total_plane_mass(n)); 
            Falcon(n)=0; 
            Delta(n)=0; 
            Atlas(n)=0; 
            Minotaur(n)=0; 
        end 
    elseif mass_row(n)==2 
        if total_plane_mass(n) <= lv.mass.bound(2,3) 
            Falcon(n)=1; 
            Minotaur(n)=0; 
            Pegasus(n)=0; 
            Delta(n)=0; 
            Atlas(n)=0; 
        elseif total_plane_mass(n) > lv.mass.bound(2,3) 
            Falcon(n)=ceil(total_plane_mass(n)/lv.mass.bound(2,3)); 
            Minotaur(n)=0; 
            Pegasus(n)=0; 
            Delta(n)=0; 
            Atlas(n)=0; 
        end 
    end 
 end 
launch_vehicles=[Pegasus(1) Minotaur(1) Falcon(1) Atlas(1) Delta(1)]; 
cost_deploy_per_plane=launch_vehicles*lv.cost.average'; 
%% 
%Pre-allocate arrays 
Spacecraftcost_USCM=zeros(1,sattypes); 
IAT_USCM=zeros(1,sattypes); 
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ProgramLevel_USCM=zeros(1,sattypes); 
GSE_USCM=zeros(1,sattypes); 
TotalCost_USCM_NRE=zeros(1,sattypes); 
cost_develop=zeros(1,sattypes); 
Spacecraftcost_USCM_TFU=zeros(1,sattypes); 
IAT_USCM_TFU=zeros(1,sattypes); 
ProgramLevel_USCM_TFU=zeros(1,sattypes); 
LOOS_USCM_TFU=zeros(1,sattypes); 
TotalCost_USCM_TFU=zeros(1,sattypes); 
cost_produce=zeros(1,sattypes); 
Spacecraftcost_SSCM=zeros(1,sattypes); 
payloadcost_SSCM=zeros(1,sattypes); 
IAT_SSCM=zeros(1,sattypes); 
ProgramLevel_SSCM=zeros(1,sattypes); 
GSE_SSCM=zeros(1,sattypes); 
LOOS_SSCM=zeros(1,sattypes); 
TotalCost_SSCM_NRE=zeros(1,sattypes); 
TotalCost_SSCM_TFU=zeros(1,sattypes); 
cost_larger_sat=zeros(1,sattypes); 
cost_smaller_sat=zeros(1,sattypes); 
A=zeros(1,sattypes); 
B=zeros(1,sattypes); 
smaller_sat_norm=zeros(1,sattypes); 
larger_sat_norm=zeros(1,sattypes); 
% 
%Calculate USCM RDTE cost  
%SME SMAD 2011 Page 298 Table 11-8 
for n=1:sattypes 
    Spacecraftcost_USCM(n)=110.2*Spacecraftdrymass(n); 
    IAT_USCM(n)=0.195*(navpayloadcost_USCM(n)+Spacecraftcost_USCM(n)); 
    
ProgramLevel_USCM(n)=0.414*(IAT_USCM(n)+Spacecraftcost_USCM(n))^0.841; 
    GSE_USCM(n)=0.421*(Spacecraftcost_USCM(n))^0.907*2.244; 
     
    
TotalCost_USCM_NRE(n)=navpayloadcost_USCM(n)+Spacecraftcost_USCM(n)+IAT
_USCM(n)+ProgramLevel_USCM(n)+GSE_USCM(n); 
    cost_develop(n)=TotalCost_USCM_NRE(n); 
    % 
    %Calculate USCM Theoretical First UNIT (TFU) cost (c2->c1) 
    %SME SMAD 2011 Page 299 Table 11-9 
    Spacecraftcost_USCM_TFU(n)=289.5*Spacecraftdrymass(n)^0.716; 
    
IAT_USCM_TFU(n)=0.124*(Spacecraftcost_USCM_TFU(n)+navpayloadcost_USCM_T
FU(n)); 
    
ProgramLevel_USCM_TFU(n)=0.320*(navpayloadcost_USCM_TFU(n)+Spacecraftco
st_USCM_TFU(n)+IAT_USCM_TFU(n))^.841; 
    LOOS_USCM_TFU(n)=4.9*(Spacecraftdrymass(n)+payload_mass(n)); 
%Launch & Orbital Operations Support (LOOS)% 
     
    
TotalCost_USCM_TFU(n)=navpayloadcost_USCM_TFU(n)+Spacecraftcost_USCM_TF
U(n)+... 
        IAT_USCM_TFU(n)+ProgramLevel_USCM_TFU(n)+LOOS_USCM_TFU(n); 
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    cost_produce(n)=TotalCost_USCM_TFU(n); 
     
    %Small Spacecraft Cost Model 
    %SSCM non-recurring engineering cost 
    Spacecraftcost_SSCM(n)=1064+35.5*(Spacecraftdrymass(n))^1.261; 
    payloadcost_SSCM(n)=.4*Spacecraftcost_SSCM(n); 
    IAT_SSCM(n)=.139*Spacecraftcost_SSCM(n); 
    ProgramLevel_SSCM(n)=.229*Spacecraftcost_SSCM(n); 
    GSE_SSCM(n)=.066*Spacecraftcost_SSCM(n); 
    LOOS_SSCM(n)=.061*Spacecraftcost_SSCM(n); 
     
    
TotalCost_SSCM_NRE(n)=Spacecraftcost_SSCM(n)*.6+payloadcost_SSCM(n)*.6+
IAT_SSCM(n)*0+... 
        ProgramLevel_SSCM(n)*.5+GSE_SSCM(n)*1+LOOS_SSCM(n)*0; 
     
    cost_develop(n)=TotalCost_SSCM_NRE(n); 
     
    %Calculate SSCM Recurring Engineering Cost 
    
TotalCost_SSCM_TFU(n)=Spacecraftcost_SSCM(n)*.4+payloadcost_SSCM(n)*.4+
IAT_SSCM(n)*1+... 
        ProgramLevel_SSCM(n)*.5+GSE_SSCM(n)*0+LOOS_SSCM(n)*1; 
     
    cost_produce(n)=TotalCost_SSCM_TFU(n); 
     
    
cost_larger_sat(n)=TotalCost_USCM_NRE(n)*xdev(n)+TotalCost_USCM_TFU(n)*
xprod(n); 
    
cost_smaller_sat(n)=TotalCost_SSCM_NRE(n)*xdev(n)+TotalCost_SSCM_TFU(n)
*xprod(n); 
    A(n)=1-exp(-(mass(n)-750)/500); 
    B(n)=-1+exp((mass(n)-750)/500); 
    smaller_sat_norm(n)=A(n)/(A(n)+B(n)); 
    larger_sat_norm(n)=B(n)/(A(n)+B(n));    
end 
  
%Calculate total cost in thousands of dollars 
TotCost=cost_larger_sat*larger_sat_norm'+cost_smaller_sat*smaller_sat_n
orm'+cost_deploy_per_plane'*num_planes'; 
  
End 

D.3: PDOP.m 

function performance=PDOP(x) 
  
%**User Input** 
nvars=11; 
%**End User Input** 
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sattypes=numel(x)/nvars; %This is if large and small satellites are 
used 
% 
%Pre-allocate arrays 
num_planes=zeros(1,sattypes); 
num_sat_per_plane=zeros(1,sattypes); 
num_sats=zeros(1,sattypes); 
true_anomaly_spread=zeros(1,sattypes); 
RAAN_increment=zeros(1,sattypes); 
a=zeros(1,sattypes); 
alt=zeros(1,sattypes); 
ecc=zeros(1,sattypes); 
incl=zeros(1,sattypes); 
RAAN=zeros(1,sattypes); 
arg_perigee=zeros(1,sattypes); 
mean_anomaly=zeros(1,sattypes); 
transmit_power=zeros(1,sattypes); 
% 
%This loop defines the individual orbital elements from the design 
vector,x 
for n=1:sattypes 
    %Walker Parameters created as variables 
    num_planes(n)=x(1+(n-1)*nvars); 
    num_sat_per_plane(n)=x(n*nvars-nvars+2); 
    num_sats(n)=num_planes(n)*num_sat_per_plane(n); 
    true_anomaly_spread(n)=x(n*nvars-nvars+3); 
    RAAN_increment(n)=x(n*nvars-nvars+4); 
     
    %COE's created as variables 
    a(n)=(x(n*nvars-nvars+5)+6378.137)*1000; 
    alt(n)=x(n*nvars-nvars+5)*1000; %meters 
    ecc(n)=x(n*nvars-nvars+6); 
    incl(n)=x(n*nvars-nvars+7); 
    RAAN(n)=x(n*nvars-nvars+8); 
    arg_perigee(n)=x(n*nvars-nvars+9); 
    mean_anomaly(n)=x(n*nvars-nvars+10);  
    transmit_power(n)=x(n*nvars-nvars+11); 
end 
% 
%Start STK interface 
try 
    uiapp=actxGetRunningServer('STK10.application'); 
catch 
    uiapp=actxserver('STK10.application'); 
end 
% 
root=uiapp.Personality2; 
%Set to 0 to keep STK from displaying 
uiapp.visible=0; 
% 
%This loads the nav scenario  
root.ExecuteCommand('Load / Scenario "C:\Users\user\My 
Documents\Thesis\STK_Matlab\NavDesign.sc'); 
%Set scenario units in STK 
root.ExecuteCommand('SetUnits /km EPOCHSEC'); 
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% 
%Create constellation object in STK 
root.ExecuteCommand('New / */Constellation NAVcon'); 
%% Create Seed Satellite 
for n=1:sattypes 
    if num_sats(n)==0; 
    else 
        try 
            %Create new satellite in STK called NAVSat 
            root.ExecuteCommand(['New / */Satellite NAVSat' 
num2str(n)]); 
            %Set the orbital parameters for the sat using variables 
            root.ExecuteCommand(['SetState */Satellite/NAVSat' 
num2str(n) ' Classical TwoBody UseScenarioInterval 60 ICRF "16 Sep 2013 
16:00:00.000" ' num2str(a(n)) ' ' num2str(ecc(n)) ' ' num2str(incl(n)) 
' ' num2str(arg_perigee(n)) ' ' num2str(RAAN(n)) ' ' 
num2str(mean_anomaly(n))]); 
         catch 
            Flag_error=1; 
        end 
    end 
end 
% 
%% Create Walker Constellation based on seed satellite 
% 
%This loop ensures there is more than 1 satellite available 
for n=1:sattypes 
    if num_sats(n)==0 
    else 
        if num_sats(n)>1 
            try 
            %Create Walker constellation based on seed satellite     
            root.ExecuteCommand(['Walker */Satellite/NAVSat' num2str(n) 
' ModDelta ' num2str(num_planes(n)) ' ' num2str(num_sat_per_plane(n)) ' 
' num2str(true_anomaly_spread(n)) ' ' num2str(RAAN_increment(n)) ' Yes 
ConstellationName NAVcon']); 
            catch 
                Flag_error=2 
            end 
        end 
    end 
end                     
% 
%% Calculate PDOP  
% 
%Create new coverage definition in STK 
root.ExecuteCommand('New / */CoverageDefinition Performance'); 
% 
%Assign and activate defined constellation 
root.ExecuteCommand('Cov */CoverageDefinition/Performance Asset 
*/Constellation/NAVcon Assign'); 
root.ExecuteCommand('Cov */CoverageDefinition/Performance Asset 
*/Constellation/NAVcon Activate'); 
% 
%Compute coverage of the set coverage definition 
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root.ExecuteCommand('Cov */CoverageDefinition/Performance Access 
Compute'); 
% 
%Create new figure of merit in STK 
root.ExecuteCommand('New / 
*/CoverageDefinition/Performance/FigureOfMerit fm'); 
% 
%Define FOM, which is PDOP 
root.ExecuteCommand('Cov 
*/CoverageDefinition/Performance/FigureOfMerit/fm FOMDefine Definition 
DOP Compute Average DOPType PDOP Method Overdetermined TimeStep 300'); 
  
%% Plot figure of merit and determine PDOP value for GA 
% 
%This line identifies the object to use is the figure of merit, fm 
cc=root.Children.Item('NavDesign').Children.Item('Performance').Childre
n.Item('fm'); 
% 
%This line determines the FOM by latitude as defined in STK 
val_by_lat=cc.DataProviders.Item('Value by 
Latitude').Exec.DataSets.ToArray; 
%The Value by Latitude array contains these columns: Lat,Min,Max,Avg,St 
%Dev,Count,and Sum 
% 
val_by_lat_mat=cell2mat(val_by_lat(:,1:4)); 
%Plot Latitude vs. PDOP 
% plot(val_by_lat_mat(:,1),val_by_lat_mat(:,4)) 
% xlabel('Latitude, deg'); ylabel('Average PDOP'); 
% 
performance=median(val_by_lat_mat(:,3)); 
  
%root.ExecuteCommand(['ConControl / VerboseOn']); 
  
End 

D.4: int_crossover.m 

function 
xoverKids=int_crossover(parents,options,GenomeLength,FitnessFcn,unused,
thisPopulation) 
  
IntCon=[1,2,5]; 
  
nKids=length(parents)/2; 
  
xoverKids=zeros(nKids,GenomeLength); 
  
index=1; 
  
for i=1:nKids 
    r1=parents(index); 
    index=index+1; 
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    r2=parents(index); 
    index=index+1; 
     
    alpha=rand; 
    xoverKids(i,:)=alpha*thisPopulation(r1,:)+(1-
alpha)*thisPopulation(r2,:);     
end 
  
x=rand; 
if x>=0.5 
    xoverKids(:,IntCon)=floor(xoverKids(:,IntCon)); 
else 
    xoverKids(:,IntCon)=ceil(xoverKids(:,IntCon)); 
end 
range=options.PopInitRange; 
xoverKids=checkbounds(xoverKids,range); 
end 

D.5: int_mutation.m 

function mutationChildren= 
int_mutation(parents,options,GenomeLength,~,state,~,~) 
  
IntCon=[1,2,5]; 
  
shrink=0.01; 
scale=1; 
scale=scale-shrink*scale*state.Generation/options.Generations; 
range=options.PopInitRange; 
lower=range(1,:); 
upper=range(2,:); 
scale=scale*(upper-lower); 
mutationPop=length(parents); 
  
mutationChildren=repmat(lower,mutationPop,1)+repmat(scale,mutationPop,1
).*... 
    rand(mutationPop,GenomeLength); 
  
x=rand; 
if x>=0.5 
    mutationChildren(:,IntCon)=floor(mutationChildren(:,IntCon)); 
else 
    mutationChildren(:,IntCon)=ceil(mutationChildren(:,IntCon)); 
end 
mutationChildren=checkbounds(mutationChildren,range); 
end 

D.6: int_pop.m 

function Population=int_pop(GenomeLength,~,options) 
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totalPopulation=sum(options.PopulationSize); 
  
IntCon=[1,2,5]; 
  
range=options.PopInitRange; 
lower=range(1,:); 
span=range(2,:)-lower; 
  
Population=repmat(lower,totalPopulation,1)+repmat(span,totalPopulation,
1).*rand(totalPopulation,GenomeLength); 
  
x=rand; 
if x>=0.5 
    Population(:,IntCon)=floor(Population(:,IntCon)); 
else 
    Population(:,IntCon)=ceil(Population(:,IntCon)); 
end 
Population=checkbounds(Population,range); 
  
End 

D.7: GPS_constellation.m 

%% Start STK interface 
try 
    uiapp=actxGetRunningServer('STK10.application'); 
catch 
    uiapp=actxserver('STK10.application'); 
end 
% 
root=uiapp.Personality2; 
uiapp.visible=true; 
% 
%This loads the scenario including targets generated from targets.m 
root.ExecuteCommand('Load / Scenario "C:\Users\user\My 
Documents\Thesis\STK_Matlab\NavDesign.sc'); 
%Set scenario units in STK 
root.ExecuteCommand('SetUnits /km EPOCHSEC'); 
% 
%This loop includes the target in the current STK scenario 
for n=1:2 
    
target(n)=root.CurrentScenario.children.Item(strcat('target',num2str(n)
)); 
end 
%% This loop generates GPS constellation based on an almanac 
%PRN stands for pseudorandom noise, and it is used to represent 
specific 
%GPS satellites (only goes to 32) 
prn=1:32; 
% 
count=0; 
% 
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for jj=1:length(prn) 
    current=num2str(prn(jj)); 
    %Create a new satellite in STK called GPSSat 
    root.ExecuteCommand(['New / */Satellite GPSSat' current]); 
    try 
        %Use GPS almanac to set the state of the satellite in STK 
        root.ExecuteCommand(['SetState */Satellite/gpsSat' current ' 
GPS ' current ' UpdateMode FromFiles SourceFile 
"C:\Users\User\Desktop\Diniz\current.alm" TimePeriod 
UseScenarioInterval']); 
    catch 
        root.ExecuteCommand(['Unload / */Satellite/GPSSat' current]); 
        warning(['GPS satellite with PRN' current 'failed to retrieve 
data']); 
        count=count+1; 
        fail(count)=prn(jj); 
    end 
end 
  
%% Create coverage definition and figure of merit 
% 
%This line creates the coverage definition 
root.ExecuteCommand(['New / */CoverageDefinition Performance']); 
% 
%This loop assigns and activates the GPSSat's 
for kk=1:length(prn) 
    curr=num2str(prn(kk)); 
    special=str2num(curr); 
    %Some of the PRN's do not load properly so this loop excludes them 
    if special==3 
        special=special+1; 
        curr=num2str(special); 
    end     
    %These commands assign and activate each of the GPSSat's 
    root.ExecuteCommand(['Cov */CoverageDefinition/Performance Asset 
*/Satellite/GPSSat' curr ' Assign ']); 
    root.ExecuteCommand(['Cov */CoverageDefinition/Performance Asset 
*/Satellite/GPSSat' curr ' Activate ']); 
end 
% 
%This line computes the coverage of the set coverage definition 
root.ExecuteCommand(['Cov */CoverageDefinition/Performance Access 
Compute']) 
%This line creates a figure of merit in STK 
root.ExecuteCommand(['New / 
*/CoverageDefinition/Performance/FigureOfMerit fm']); 
%This line defines the figure of merit, which is PDOP 
root.ExecuteCommand(['Cov 
*/CoverageDefinition/Performance/FigureOfMerit/fm FOMDefine Definition 
DOP Compute Average DOPType PDOP Method Overdetermined TimeStep 300']); 
%% Plot figure of merit and determine PDOP value for GA 
% 
%This line identifies the object to use is the figure of merit, fm 
cc=root.Children.Item('TargetDeck').Children.Item('Performance').Childr
en.Item('fm'); 
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% 
%This line calculates the figure of merit by point and places data in 
an 
%array 
val_by_point=cc.DataProviders.Item('Value By 
Point').Exec.DataSets.ToArray; 
% 
val_by_point_mat=cell2mat(val_by_point(:,1:4)); 
%figure(3);plot3(ee(:,2),ee(:,1),log10(ee(:,4)),'.');daspect([180,180,5
]) 
%This line determines the FOM by region and sets it in an array 
region_stats=cc.DataProviders.Item('Region 
Stats').Exec.DataSets.ToArray; 
% 
%The Region Stats array contains these columns: Region Name,Number of 
%Accesses,Min,Max,Avg,St Dev,and Sum 
% 
%Since column 1 contains string values, this line converts them to 
numbers 
region_num=cellfun(@str2num,region_stats(:,1)); 
% 
%This line converts the contents of the cell array into a matrix 
region_stats_mat=cell2mat(region_stats(:,3:6)); 
% 
%Plot Region Name vs. Avg PDOP 
figure(4);plot(region_num,region_stats_mat(:,3)) 
xlabel('Region Number'); ylabel('Average PDOP'); 
% 
%This line determines the FOM by latitude as defined in STK 
val_by_lat=cc.DataProviders.Item('Value by 
Latitude').Exec.DataSets.ToArray; 
%The Value by Latitude array contains these columns: Lat,Min,Max,Avg,St 
%Dev,Count,and Sum 
% 
val_by_lat_mat=cell2mat(val_by_lat(:,1:4)); 
%Plot Latitude vs. Avg PDOP 
figure(5); plot(val_by_lat_mat(:,1),val_by_lat_mat(:,4)) 
xlabel('Latitude, deg'); ylabel('Average PDOP'); 
% 
PDOP=median(val_by_lat_mat(:,3)); 

D.8: gaoutputfcn.m 

function [state, options,optchanged] = gaoutputfcn(options,state,flag) 
%GAOUTPUTFCNTEMPLATE Template to write custom OutputFcn for GA. 
%   [STATE, OPTIONS, OPTCHANGED] = 
GAOUTPUTFCNTEMPLATE(OPTIONS,STATE,FLAG) 
%   where OPTIONS is an options structure used by GA.  
% 
%   STATE: A structure containing the following information about the 
state  
%   of the optimization: 
%             Population: Population in the current generation 
%                  Score: Scores of the current population 
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%             Generation: Current generation number 
%              StartTime: Time when GA started  
%               StopFlag: String containing the reason for stopping 
%              Selection: Indices of individuals selected for elite, 
%                         crossover and mutation 
%            Expectation: Expectation for selection of individuals 
%                   Best: Vector containing the best score in each 
generation 
%        LastImprovement: Generation at which the last improvement in 
%                         fitness value occurred 
%    LastImprovementTime: Time at which last improvement occurred 
% 
%   FLAG: Current state in which OutputFcn is called. Possible values 
are: 
%         init: initialization state  
%         iter: iteration state 
%    interrupt: intermediate state 
%         done: final state 
%        
%   STATE: Structure containing information about the state of the 
%          optimization. 
% 
%   OPTCHANGED: Boolean indicating if the options have changed. 
% 
%   See also PATTERNSEARCH, GA, GAOPTIMSET 
  
%   Copyright 2004-2006 The MathWorks, Inc. 
%   $Revision: 1.1.6.1 $  $Date: 2009/08/29 08:24:37 $ 
  
optchanged = false; 
  
switch flag 
 case 'init' 
        disp('Starting the algorithm'); 
%     case {'iter','interrupt'} 
%         disp('Iterating ...') 
    case 'iter' 
        genpop=state.Population 
        genscore=state.Score 
        gennum=state.Generation 
        %genbest=state.Best 
        save('genscore.mat','genscore') 
        save('gennum.mat','gennum') 
        save('genpop.mat','genpop') 
        %save('genbest.mat','genbest') 
    case 'done' 
        disp('Performing final task'); 
end 
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